| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112 | 
							
- #fool: should be wrColor like prColor... dumb
 
- def wrapRed(skk):    return "\033[91m{}\033[00m".format(skk)
 
- def wrapGreen(skk):  return "\033[92m{}\033[00m".format(skk)
 
- def wrapPurple(skk): return "\033[95m{}\033[00m".format(skk)
 
- def wrapWhite(skk):  return "\033[97m{}\033[00m".format(skk)
 
- def wrapOrange(skk):  return "\033[0;33m{}\033[00m".format(skk)
 
- # these should reimplement the print interface..
 
- def prRed(*args): print (*[wrapRed(arg) for arg in args])
 
- def prGreen(*args): print (*[wrapGreen(arg) for arg in args])
 
- def prPurple(*args): print (*[wrapPurple(arg) for arg in args])
 
- def prWhite(*args): print (*[wrapWhite(arg) for arg in args])
 
- def prOrange(*args): print (*[wrapOrange(arg) for arg in args])
 
- # add THIS to the top of a file for easy access:
 
- # from mantis.utilities import (prRed, prGreen, prPurple, prWhite,
 
- #                               prOrange,
 
- #                               wrapRed, wrapGreen, wrapPurple, wrapWhite,
 
- #                               wrapOrange,)
 
- #  SOME PRINTS
 
- #DO! Figure out what the hell this does
 
- # then re-write it in a simpler, cleaner way
 
- # that ignores groups because it gets lines from a parsed tree
 
- # ideally I can use the seeking-lines instead of the socket/tree lines
 
- # since those allow the function to travel through the tree.
 
- # not sure if the above comment still has any place here....
 
- def print_lines(lines): 
 
-     printstring, string = "", ""
 
-     cur_g = 0
 
-     for line in lines:
 
-         string += wrapRed("%i: " % len(line))
 
-         for s, g in line:
 
-             new_g = len(g) -1
 
-             difference = new_g - cur_g
 
-             if difference > 0:
 
-                 string = string[:-1] # get rid of leading space
 
-                 for i in range(difference):
 
-                     string += " [ "
 
-             elif difference < 0:
 
-                 string = string[:-4]# get rid of arrow
 
-                 for i in range(abs(difference)):
 
-                     string += " ] "
 
-                 string += "-> "
 
-             cur_g = new_g
 
-             wrap=wrapWhite
 
-             if (s.node.bl_idname in ['UtilitySwitch', 'UtilityDriver', 'UtilityDriverVariable']):
 
-                 wrap = wrapPurple
 
-             elif (s.node.bl_idname in ['xFormArmatureNode', 'xFormBoneNode']):
 
-                 wrap = wrapOrange
 
-             elif (s.node.bl_idname in ['LinkStretchTo']):
 
-                 wrap = wrapRed
 
-             elif ('Link' in s.node.bl_idname):
 
-                 wrap = wrapGreen
 
-             string += wrap(s.node.name + ":" + s.name) + " -> "
 
-         string = string[:-4]
 
-         while cur_g > 0:
 
-             cur_g -= 1
 
-             string += " ] "
 
-         cur_g, difference = 0,0
 
-         printstring +=string + "\n\n"; string = ""
 
-     return printstring
 
-     # why is this not printing groups in brackets?
 
- def print_socket_signature(sig):
 
-     string = ""
 
-     for i, e in enumerate(sig):
 
-         if (e == "NONE"):
 
-             continue
 
-         wrap = wrapWhite
 
-         if (i == len(sig)-2):
 
-             wrap = wrapRed
 
-         elif (i == len(sig) - 1):
 
-             wrap = wrapGreen
 
-         string+= wrap(e) + ":"
 
-     return string[:-1]
 
-     
 
- def print_node_signature(sig,):
 
-     string = ""
 
-     for i, e in enumerate(sig):
 
-         if (e == "NONE"):
 
-             continue
 
-         wrap = wrapWhite
 
-         if (i == len(sig)-2):
 
-             wrap = wrapRed
 
-         elif (i == len(sig) - 1):
 
-             continue
 
-         string+= wrap(e) + ":"
 
-     return string[:-1]
 
- def print_parsed_node(parsed_node):
 
-     # do: make this consistent with the above
 
-     string = ""
 
-     for k, v in parsed_node.items():
 
-         if isinstance(v, dict):
 
-             string += "%s:\n" % (k)
 
-             for k1, v1 in v.items():
 
-                 string += "    %s:                %s\n" % (k1, v1)
 
-         else:
 
-             string += "%s:    %s\n" % (k, v )
 
-     return string
 
- ## SIGNATURES ##
 
- def get_socket_signature(line_element):
 
-     """
 
-     This function creates a convenient, hashable signature for
 
-     identifying a node path.
 
-     """
 
-     if not line_element:
 
-         return None
 
-     signature, socket, tree_path = [], line_element[0], line_element[1]
 
-     for n in tree_path:
 
-         if hasattr(n, "name"):
 
-             signature.append(n.name)
 
-         else:
 
-             signature.append("NONE")
 
-     signature.append(socket.node.name); signature.append(socket.identifier)
 
-     return tuple(signature)
 
- def tuple_of_line(line):
 
-     # For creating a set of lines
 
-     return tuple(tuple_of_line_element(e) for e in line)
 
- def tuple_of_line_element(line_element):
 
-     return (line_element[0], tuple(line_element[1]))
 
- # A fuction for getting to the end of a Reroute.
 
- def socket_seek(start_link, links):
 
-     link = start_link
 
-     while(link.from_socket):
 
-         for newlink in links:
 
-             if link.from_socket.node.inputs:
 
-                 if newlink.to_socket == link.from_socket.node.inputs[0]:
 
-                     link=newlink; break
 
-         else:
 
-             break
 
-     return link.from_socket
 
- # this creates fake links that have the same interface as Blender's
 
- # so that I can bypass Reroutes
 
- def clear_reroutes(links):
 
-     from .base_definitions import DummyLink
 
-     kept_links, rerouted_starts = [], []
 
-     rerouted = []
 
-     all_links = links.copy()
 
-     while(all_links):
 
-         link = all_links.pop()
 
-         to_cls = link.to_socket.node.bl_idname
 
-         from_cls = link.from_socket.node.bl_idname
 
-         reroute_classes = ["NodeReroute"]
 
-         if (to_cls in reroute_classes and
 
-             from_cls in reroute_classes):
 
-                 rerouted.append(link)
 
-         elif (to_cls in reroute_classes and not
 
-             from_cls in reroute_classes):
 
-                 rerouted.append(link)
 
-         elif (from_cls in reroute_classes and not
 
-             to_cls in reroute_classes):
 
-                 rerouted_starts.append(link)
 
-         else:
 
-             kept_links.append(link)
 
-     for start in rerouted_starts:
 
-         from_socket = socket_seek(start, rerouted)
 
-         new_link = DummyLink(from_socket=from_socket, to_socket=start.to_socket, nc_from=None, nc_to=None, multi_input_sort_id=start.multi_input_sort_id )
 
-         kept_links.append(new_link)
 
-     return kept_links
 
- def tree_from_nc(sig, base_tree):
 
-     if (sig[0] == 'MANTIS_AUTOGENERATED'):
 
-         sig = sig[:-2] # cut off the end part of the signature. (Why am I doing this??) # because it uses socket.name and socket.identifier
 
-         # this will lead to totally untraceble bugs in the event of a change in how signatures are assigned
 
-     tree = base_tree
 
-     for i, path_item in enumerate(sig):
 
-         if (i == 0) or (i == len(sig) - 1):
 
-             continue
 
-         tree = tree.nodes.get(path_item).node_tree
 
-     return tree
 
-     
 
- def get_node_prototype(sig, base_tree):
 
-     return tree_from_nc(sig, base_tree).nodes.get( sig[-1] )
 
- ##################################################################################################
 
- # groups and changing sockets -- this is used extensively by Schema.
 
- ##################################################################################################
 
- def get_socket_maps(node):
 
-     maps = [{}, {}]
 
-     node_collection = ["inputs", "outputs"]
 
-     links = ["from_socket", "to_socket"]
 
-     for collection, map, link in zip(node_collection, maps, links):
 
-         for sock in getattr(node, collection):
 
-             if sock.is_linked:
 
-                 map[sock.identifier]=[ getattr(l, link) for l in sock.links ]
 
-             else:
 
-                 map[sock.identifier]=sock.get("default_value")
 
-     return maps
 
- def do_relink(node, s, map, in_out='INPUT', parent_name = ''):
 
-     tree = node.id_data; interface_in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT'
 
-     if hasattr(node, "node_tree"):
 
-         tree = node.node_tree
 
-         interface_in_out=in_out
 
-     from bpy.types import NodeSocket
 
-     get_string = '__extend__'
 
-     if s: get_string = s.identifier
 
-     if val := map.get(get_string):
 
-         if isinstance(val, list):
 
-             for sub_val in val:
 
-                 # this will only happen once because it assigns s, so it is safe to do in the for loop.
 
-                 if s is None:
 
-                     # prGreen("zornpt")
 
-                     name = unique_socket_name(node, sub_val, tree)
 
-                     sock_type = sub_val.bl_idname
 
-                     if parent_name:
 
-                         interface_socket = update_interface(tree.interface, name, interface_in_out, sock_type, parent_name)
 
-                     if in_out =='INPUT':
 
-                         s = node.inputs.new(sock_type, name, identifier=interface_socket.identifier)
 
-                     else:
 
-                         s = node.outputs.new(sock_type, name, identifier=interface_socket.identifier)
 
-                     if parent_name == 'Array': s.display_shape='SQUARE_DOT'
 
-                     # then move it up and delete the other link.
 
-                     # this also needs to modify the interface of the node tree.
 
-                     
 
-                     
 
-                 #
 
-                 if isinstance(sub_val, NodeSocket):
 
-                     if in_out =='INPUT':
 
-                         node.id_data.links.new(input=sub_val, output=s)
 
-                     else:
 
-                         node.id_data.links.new(input=s, output=sub_val)
 
-         else:
 
-             try:
 
-                 s.default_value = val
 
-             except (AttributeError, ValueError): # must be readonly or maybe it doesn't have a d.v.
 
-                 pass
 
- def update_interface(interface, name, in_out, sock_type, parent_name):
 
-     if parent_name:
 
-         if not (interface_parent := interface.items_tree.get(parent_name)):
 
-             interface_parent = interface.new_panel(name=parent_name)
 
-         socket = interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
 
-         if parent_name == 'Connection':
 
-             in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT' # flip this make sure connections always do both
 
-             interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
 
-         return socket
 
-     else:
 
-         raise RuntimeError(wrapRed("Cannot add interface item to tree without specifying type."))
 
- def relink_socket_map(node, socket_collection, map, item, in_out=None):
 
-     from bpy.types import NodeSocket
 
-     if not in_out: in_out=item.in_out
 
-     if node.bl_idname in ['MantisSchemaGroup'] and item.parent and item.parent.name == 'Array':
 
-         multi = False
 
-         if in_out == 'INPUT':
 
-             multi=True
 
-         s = socket_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier,  use_multi_input=multi)
 
-         # s.link_limit = node.schema_length TODO
 
-     else:
 
-         s = socket_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier)
 
-     if item.parent.name == 'Array': s.display_shape = 'SQUARE_DOT'
 
-     do_relink(node, s, map)
 
- def unique_socket_name(node, other_socket, tree):
 
-     name_stem = other_socket.bl_label; num=0
 
-     # if hasattr(other_socket, "default_value"):
 
-     #     name_stem = type(other_socket.default_value).__name__
 
-     for item in tree.interface.items_tree:
 
-         if item.item_type == 'PANEL': continue
 
-         if other_socket.is_output and item.in_out == 'INPUT': continue
 
-         if not other_socket.is_output and item.in_out == 'OUTPUT': continue
 
-         if name_stem in item.name: num+=1
 
-     name = name_stem + '.' + str(num).zfill(3)
 
-     return name
 
- ##############################
 
- #  READ TREE and also Schema Solve!
 
- ##############################
 
- def init_connections(nc):
 
-     c, hc = [], []
 
-     for i in nc.outputs.values():
 
-         for l in i.links:
 
-             # if l.from_node != nc:
 
-             #     continue
 
-             if l.is_hierarchy:
 
-                 hc.append(l.to_node)
 
-             c.append(l.to_node)
 
-     nc.hierarchy_connections = hc
 
-     nc.connections = c
 
- def init_dependencies(nc):
 
-     c, hc = [], []
 
-     for i in nc.inputs.values():
 
-         for l in i.links:
 
-             # if l.to_node != nc:
 
-             #     continue
 
-             if l.is_hierarchy:
 
-                 hc.append(l.from_node)
 
-             c.append(l.from_node)
 
-     nc.hierarchy_dependencies = hc
 
-     nc.dependencies = c
 
- from .base_definitions import from_name_filter, to_name_filter
 
- def init_schema_dependencies(schema, all_nc):
 
-     schema_name = schema.signature[-1]
 
-     all_input_nodes = []
 
-     all_output_nodes = []
 
-     # so the challenge is to map these and check both ends
 
-     from .base_definitions import from_name_filter, to_name_filter
 
-     # go through the interface items then of course
 
-     from .utilities import get_node_prototype
 
-     np = get_node_prototype(schema.signature, schema.base_tree)
 
-     tree = np.node_tree
 
-     schema.dependencies = []
 
-     schema.hierarchy_dependencies = []
 
-     for item in tree.interface.items_tree:
 
-         if item.item_type == 'PANEL':
 
-             continue
 
-         hierarchy = True
 
-         hierarchy_reason=""
 
-         if item.in_out == 'INPUT':
 
-             c = schema.dependencies
 
-             hc = schema.hierarchy_dependencies
 
-             if item.parent and item.parent.name == 'Array':
 
-                 for t in ['SchemaArrayInput', 'SchemaArrayInputGet']:
 
-                     if (nc := all_nc.get( (*schema.signature, t) )):
 
-                         for to_link in nc.outputs[item.name].links:
 
-                             if to_link.to_socket in to_name_filter:
 
-                                 # hierarchy_reason='a'
 
-                                 hierarchy = False
 
-                         for from_link in schema.inputs[item.identifier].links:
 
-                             if from_link.from_socket in from_name_filter:
 
-                                 hierarchy = False
 
-                                 # hierarchy_reason='b'
 
-                         if from_link.from_node not in c:
 
-                             if hierarchy:
 
-                                 hc.append(from_link.from_node)
 
-                             c.append(from_link.from_node)
 
-             if item.parent and item.parent.name == 'Constant':
 
-                 if nc := all_nc.get((*schema.signature, 'SchemaConstInput')):
 
-                     for to_link in nc.outputs[item.name].links:
 
-                         if to_link.to_socket in to_name_filter:
 
-                             # hierarchy_reason='c'
 
-                             hierarchy = False
 
-                     for from_link in schema.inputs[item.identifier].links:
 
-                         if from_link.from_socket in from_name_filter:
 
-                             # hierarchy_reason='d'
 
-                             hierarchy = False
 
-                     if from_link.from_node not in c:
 
-                         if hierarchy:
 
-                             hc.append(from_link.from_node)
 
-                         c.append(from_link.from_node)
 
-             if item.parent and item.parent.name == 'Connection':
 
-                 if nc := all_nc.get((*schema.signature, 'SchemaIncomingConnection')):
 
-                     for to_link in nc.outputs[item.name].links:
 
-                         if to_link.to_socket in to_name_filter:
 
-                             # hierarchy_reason='e'
 
-                             hierarchy = False
 
-                     for from_link in schema.inputs[item.identifier].links:
 
-                         if from_link.from_socket in from_name_filter:
 
-                             # hierarchy_reason='f'
 
-                             hierarchy = False
 
-                     if from_link.from_node not in c:
 
-                         if hierarchy:
 
-                             hc.append(from_link.from_node)
 
-                         c.append(from_link.from_node)
 
- def check_and_add_root(n, roots, include_non_hierarchy=False):
 
-     if include_non_hierarchy == True and len(n.dependencies) > 0:
 
-         return 
 
-     elif len(n.hierarchy_dependencies) > 0:
 
-         return
 
-     roots.append(n)
 
- def get_link_in_out(link):
 
-     from .base_definitions import replace_types
 
-     from_name, to_name = link.from_socket.node.name, link.to_socket.node.name
 
-     # catch special bl_idnames and bunch the connections up
 
-     if link.from_socket.node.bl_idname in replace_types:
 
-         from_name = link.from_socket.node.bl_idname 
 
-     if link.to_socket.node.bl_idname in replace_types:
 
-         to_name = link.to_socket.node.bl_idname
 
-     return from_name, to_name
 
- def link_node_containers(tree_path_names, link, local_nc, from_suffix='', to_suffix=''):
 
-     dummy_types = ["DUMMY", "DUMMY_SCHEMA"]
 
-     from_name, to_name = get_link_in_out(link)
 
-     nc_from = local_nc.get( (*tree_path_names, from_name+from_suffix) )
 
-     nc_to = local_nc.get( (*tree_path_names, to_name+to_suffix))
 
-     if (nc_from and nc_to):
 
-         from_s, to_s = link.from_socket.name, link.to_socket.name
 
-         if nc_to.node_type in dummy_types: to_s = link.to_socket.identifier
 
-         if nc_from.node_type in dummy_types: from_s = link.from_socket.identifier
 
-         try:
 
-             connection = nc_from.outputs[from_s].connect(node=nc_to, socket=to_s, sort_id=link.multi_input_sort_id)
 
-             if connection is None:
 
-                 prWhite(f"Already connected: {from_name}:{from_s}->{to_name}:{to_s}")
 
-             return connection
 
-         except KeyError as e:
 
-             prRed(f"{nc_from}:{from_s} or {nc_to}:{to_s} missing; review the connections printed below:")
 
-             print (nc_from.outputs.keys())
 
-             print (nc_to.inputs.keys())
 
-             raise e
 
-     else:
 
-         prRed(nc_from, nc_to, (*tree_path_names, from_name+from_suffix), (*tree_path_names, to_name+to_suffix))
 
-         # for nc in local_nc.values():
 
-         #     prOrange(nc)
 
-         raise RuntimeError(wrapRed("Link not connected: %s -> %s in tree %s" % (from_name, to_name, tree_path_names[-1])))
 
-     
 
- def get_all_dependencies(nc):
 
-     from .base_definitions import GraphError
 
-     """ Given a NC, find all dependencies for the NC as a dict of nc.signature:nc"""
 
-     nodes = []
 
-     check_nodes = [nc]
 
-     while (len(check_nodes) > 0):
 
-         node = check_nodes.pop()
 
-         connected_nodes = node.hierarchy_dependencies.copy()
 
-         for new_node in connected_nodes:
 
-             if new_node in nodes: raise GraphError() 
 
-             nodes.append(new_node)
 
-     return nodes
 
-                 
 
- def get_all_nodes_of_type(base_tree, bl_idname):
 
-     nodes = []
 
-     check_nodes = list(base_tree.nodes)
 
-     while (len(check_nodes) > 0):
 
-         node = check_nodes.pop()
 
-         if node.bl_idname in bl_idname:
 
-             nodes.append(node)
 
-         if hasattr(node, "node_tree"):
 
-             check_nodes.extend(list(node.node_tree.nodes))
 
-     return nodes
 
-             
 
- ##################################################################################################
 
- # misc
 
- ##################################################################################################
 
- # this function is used a lot, so it is a good target for optimization.
 
- def to_mathutils_value(socket):
 
-     if hasattr(socket, "default_value"):
 
-         from mathutils import Matrix, Euler, Quaternion, Vector
 
-         val = socket.default_value
 
-         if socket.bl_idname in ['MatrixSocket']:
 
-             return socket.TellValue()
 
-         else:
 
-             return val
 
-     else:
 
-         return None
 
- def all_trees_in_tree(base_tree, selected=False):
 
-     """ Recursively finds all trees referenced in a given base-tree."""
 
-     # note that this is recursive but not by tail-end recursion
 
-     # a while-loop is a better way to do recursion in Python.
 
-     trees = [base_tree]
 
-     can_descend = True
 
-     check_trees = [base_tree]
 
-     while (len(check_trees) > 0): # this seems innefficient, why 2 loops?
 
-         new_trees = []
 
-         while (len(check_trees) > 0):
 
-             tree = check_trees.pop()
 
-             for node in tree.nodes:
 
-                 if selected == True and node.select == False:
 
-                     continue
 
-                 if new_tree := getattr(node, "node_tree", None):
 
-                     if new_tree in trees: continue 
 
-                     new_trees.append(new_tree)
 
-                     trees.append(new_tree)
 
-         check_trees = new_trees
 
-     return trees
 
- # this is a destructive operation, not a pure function or whatever. That isn't good but I don't care.
 
- def SugiyamaGraph(tree, iterations):
 
-         from grandalf.graphs import Vertex, Edge, Graph, graph_core
 
-         class defaultview(object):
 
-             w,h = 1,1
 
-             xz = (0,0)
 
-         
 
-         no_links = set()
 
-         verts = {}
 
-         for n in tree.nodes:
 
-             has_links=False
 
-             for inp in n.inputs:
 
-                 if inp.is_linked:
 
-                     has_links=True
 
-                     break
 
-             else:
 
-                 no_links.add(n.name)
 
-             for out in n.outputs:
 
-                 if out.is_linked:
 
-                     has_links=True
 
-                     break
 
-             else:
 
-                 try:
 
-                     no_links.remove(n.name)
 
-                 except KeyError:
 
-                     pass
 
-             if not has_links:
 
-                 continue
 
-                 
 
-             v = Vertex(n.name)
 
-             v.view = defaultview()
 
-             v.view.xy = n.location
 
-             v.view.h = n.height*2.5
 
-             v.view.w = n.width*2.2
 
-             verts[n.name] = v
 
-             
 
-         edges = []
 
-         for link in tree.links:
 
-             weight = 1 # maybe this is useful
 
-             edges.append(Edge(verts[link.from_node.name], verts[link.to_node.name], weight) )
 
-         graph = Graph(verts.values(), edges)
 
-         from grandalf.layouts import SugiyamaLayout
 
-         sug = SugiyamaLayout(graph.C[0]) # no idea what .C[0] is
 
-         roots=[]
 
-         for node in tree.nodes:
 
-             
 
-             has_links=False
 
-             for inp in node.inputs:
 
-                 if inp.is_linked:
 
-                     has_links=True
 
-                     break
 
-             for out in node.outputs:
 
-                 if out.is_linked:
 
-                     has_links=True
 
-                     break
 
-             if not has_links:
 
-                 continue
 
-                 
 
-             if len(node.inputs)==0:
 
-                 roots.append(verts[node.name])
 
-             else:
 
-                 for inp in node.inputs:
 
-                     if inp.is_linked==True:
 
-                         break
 
-                 else:
 
-                     roots.append(verts[node.name])
 
-         
 
-         sug.init_all(roots=roots,)
 
-         sug.draw(iterations)
 
-         for v in graph.C[0].sV:
 
-             for n in tree.nodes:
 
-                 if n.name == v.data:
 
-                     n.location.x = v.view.xy[1]
 
-                     n.location.y = v.view.xy[0]
 
-         
 
-         # now we can take all the input nodes and try to put them in a sensible place
 
-         for n_name in no_links:
 
-             n = tree.nodes.get(n_name)
 
-             next_n = None
 
-             next_node = None
 
-             for output in n.outputs:
 
-                 if output.is_linked == True:
 
-                     next_node = output.links[0].to_node
 
-                     break
 
-             # let's see if the next node
 
-             if next_node:
 
-                 # need to find the other node in the same layer...
 
-                 other_node = None
 
-                 for s_input in next_node.inputs:
 
-                     if s_input.is_linked:
 
-                         other_node = s_input.links[0].from_node
 
-                         if other_node is n:
 
-                             continue
 
-                         else:
 
-                             break
 
-                 if other_node:
 
-                     n.location = other_node.location
 
-                     n.location.y -= other_node.height*2
 
-                 else: # we'll just position it next to the next node
 
-                     n.location = next_node.location
 
-                     n.location.x -= next_node.width*1.5
 
-         
 
- def project_point_to_plane(point, origin, normal):
 
-     return point - normal.dot(point- origin)*normal
 
- ##################################################################################################
 
- # stuff I should probably refactor!!
 
- ##################################################################################################
 
- # what in the cuss is this horrible abomination??
 
- def class_for_mantis_prototype_node(prototype_node):
 
-     """ This is a class which returns a class to instantiate for
 
-         the given prototype node."""
 
-     #from .node_container_classes import TellClasses
 
-     from . import xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers
 
-     classes = {}
 
-     for module in [xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers]:
 
-         for cls in module.TellClasses():
 
-             classes[cls.__name__] = cls
 
-     # I could probably do a string.replace() here
 
-     # But I actually think this is a bad idea since I might not
 
-     #  want to use this name convention in the future
 
-     #  this is easy enough for now, may refactor.
 
-     if prototype_node.bl_idname == 'xFormArmatureNode':
 
-         return classes["xFormArmature"]
 
-     elif prototype_node.bl_idname == 'xFormBoneNode':
 
-         return classes["xFormBone"]
 
-     elif prototype_node.bl_idname == 'xFormGeometryObject':
 
-         return classes["xFormGeometryObject"]
 
-     elif prototype_node.bl_idname == 'linkInherit':
 
-         return classes["LinkInherit"]
 
-     elif prototype_node.bl_idname == 'InputFloatNode':
 
-         return classes["InputFloat"]
 
-     elif prototype_node.bl_idname == 'InputVectorNode':
 
-         return classes["InputVector"]
 
-     elif prototype_node.bl_idname == 'InputBooleanNode':
 
-         return classes["InputBoolean"]
 
-     elif prototype_node.bl_idname == 'InputBooleanThreeTupleNode':
 
-         return classes["InputBooleanThreeTuple"]
 
-     elif prototype_node.bl_idname == 'InputRotationOrderNode':
 
-         return classes["InputRotationOrder"]
 
-     elif prototype_node.bl_idname == 'InputTransformSpaceNode':
 
-         return classes["InputTransformSpace"]
 
-     elif prototype_node.bl_idname == 'InputStringNode':
 
-         return classes["InputString"]
 
-     elif prototype_node.bl_idname == 'InputQuaternionNode':
 
-         return classes["InputQuaternion"]
 
-     elif prototype_node.bl_idname == 'InputQuaternionNodeAA':
 
-         return classes["InputQuaternionAA"]
 
-     elif prototype_node.bl_idname == 'InputMatrixNode':
 
-         return classes["InputMatrix"]
 
-     elif prototype_node.bl_idname == 'MetaRigMatrixNode':
 
-         return classes["InputMatrix"]
 
-     elif prototype_node.bl_idname == 'InputLayerMaskNode':
 
-         return classes["InputLayerMask"]
 
-     elif prototype_node.bl_idname == 'GeometryCirclePrimitive':
 
-         return classes["CirclePrimitive"]
 
-         
 
-     # every node before this point is not guarenteed to follow the pattern
 
-     # but every node not checked above does follow the pattern.
 
-     
 
-     try:
 
-         return classes[ prototype_node.bl_idname ]
 
-     except KeyError:
 
-         # prGreen(prototype_node.bl_idname)
 
-         # prWhite(classes.keys())
 
-         pass
 
-     
 
-     if prototype_node.bl_idname in [ 
 
-                                     "NodeReroute",
 
-                                     "NodeGroupInput",
 
-                                     "NodeGroupOutput",
 
-                                     "MantisNodeGroup",
 
-                                     "NodeFrame",
 
-                                     "MantisSchemaGroup",
 
-                                    ]:
 
-            return None
 
-     
 
-     prRed(prototype_node.bl_idname)
 
-     raise RuntimeError(wrapOrange("Failed to create node container for: ")+wrapRed("%s" % prototype_node.bl_idname))
 
-     return None
 
- # This is really, really stupid way to do this
 
- def gen_nc_input_for_data(socket):
 
-     # Class List #TODO deduplicate
 
-     from . import xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers
 
-     from .internal_containers import NoOpNode
 
-     classes = {}
 
-     for module in [xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers]:
 
-         for cls in module.TellClasses():
 
-             classes[cls.__name__] = cls
 
-     #
 
-     socket_class_map = {
 
-                         "MatrixSocket"                         : classes["InputMatrix"],
 
-                         "xFormSocket"                          : None,
 
-                         "RelationshipSocket"                   : NoOpNode,
 
-                         "DeformerSocket"                       : NoOpNode,
 
-                         "GeometrySocket"                       : classes["InputExistingGeometryData"],
 
-                         "EnableSocket"                         : classes["InputBoolean"],
 
-                         "HideSocket"                           : classes["InputBoolean"],
 
-                         #
 
-                         "DriverSocket"                         : None,
 
-                         "DriverVariableSocket"                 : None, 
 
-                         "FCurveSocket"                         : None, 
 
-                         "KeyframeSocket"                       : None,
 
-                         "BoneCollectionSocket"                 : classes["InputString"],
 
-                         #
 
-                         "xFormParameterSocket"                 : None,
 
-                         "ParameterBoolSocket"                  : classes["InputBoolean"],
 
-                         "ParameterIntSocket"                   : classes["InputFloat"],  #TODO: make an Int node for this
 
-                         "ParameterFloatSocket"                 : classes["InputFloat"],
 
-                         "ParameterVectorSocket"                : classes["InputVector"],
 
-                         "ParameterStringSocket"                : classes["InputString"],
 
-                         #
 
-                         "TransformSpaceSocket"                 : classes["InputTransformSpace"],
 
-                         "BooleanSocket"                        : classes["InputBoolean"],
 
-                         "BooleanThreeTupleSocket"              : classes["InputBooleanThreeTuple"],
 
-                         "RotationOrderSocket"                  : classes["InputRotationOrder"],
 
-                         "QuaternionSocket"                     : None,
 
-                         "QuaternionSocketAA"                   : None,
 
-                         "IntSocket"                            : classes["InputFloat"],
 
-                         "StringSocket"                         : classes["InputString"],
 
-                         #
 
-                         "BoolUpdateParentNode"                 : classes["InputBoolean"],
 
-                         "IKChainLengthSocket"                  : classes["InputFloat"],
 
-                         "EnumInheritScale"                     : classes["InputString"],
 
-                         "EnumRotationMix"                      : classes["InputString"],
 
-                         "EnumRotationMixCopyTransforms"        : classes["InputString"],
 
-                         "EnumMaintainVolumeStretchTo"          : classes["InputString"],
 
-                         "EnumRotationStretchTo"                : classes["InputString"],
 
-                         "EnumTrackAxis"                        : classes["InputString"],
 
-                         "EnumUpAxis"                           : classes["InputString"],
 
-                         "EnumLockAxis"                         : classes["InputString"],
 
-                         "EnumLimitMode"                        : classes["InputString"],
 
-                         "EnumYScaleMode"                       : classes["InputString"],
 
-                         "EnumXZScaleMode"                      : classes["InputString"],
 
-                         "EnumCurveSocket"                      : classes["InputString"],
 
-                         "EnumMetaRigSocket"                    : classes["InputString"],
 
-                         # Deformers
 
-                         "EnumSkinning"                         : classes["InputString"],
 
-                         #
 
-                         "FloatSocket"                          : classes["InputFloat"],
 
-                         "FloatFactorSocket"                    : classes["InputFloat"],
 
-                         "FloatPositiveSocket"                  : classes["InputFloat"],
 
-                         "FloatAngleSocket"                     : classes["InputFloat"],
 
-                         "VectorSocket"                         : classes["InputVector"],
 
-                         "VectorEulerSocket"                    : classes["InputVector"],
 
-                         "VectorTranslationSocket"              : classes["InputVector"],
 
-                         "VectorScaleSocket"                    : classes["InputVector"],
 
-                         # Drivers             
 
-                         "EnumDriverVariableType"               : classes["InputString"],
 
-                         "EnumDriverVariableEvaluationSpace"    : classes["InputString"],
 
-                         "EnumDriverRotationMode"               : classes["InputString"],
 
-                         "EnumDriverType"                       : classes["InputString"],
 
-                         "EnumKeyframeInterpTypeSocket"         : classes["InputString"],
 
-                         "EnumKeyframeBezierHandleTypeSocket"   : classes["InputString"],
 
-                         # Math
 
-                         "MathFloatOperation"                   : classes["InputString"],
 
-                         "MathVectorOperation"                  : classes["InputString"],
 
-                         "MatrixTransformOperation"             : classes["InputString"],
 
-                         # Schema
 
-                         "WildcardSocket"                       : None,
 
-                        }
 
-     return socket_class_map.get(socket.bl_idname, None)
 
- ####################################
 
- # CURVE STUFF
 
- ####################################
 
- def rotate(l, n):
 
-     if ( not ( isinstance(n, int) ) ): #print an error if n is not an int:
 
-         raise TypeError("List slice must be an int, not float.")
 
-     return l[n:] + l[:n]
 
- #from stack exchange, thanks YXD
 
- # this stuff could be branchless but I don't use it much TODO
 
- def cap(val, maxValue):
 
-     if (val > maxValue):
 
-         return maxValue
 
-     return val
 
- def capMin(val, minValue):
 
-     if (val < minValue):
 
-         return minValue
 
-     return val
 
- # def wrap(val, min=0, max=1):
 
- #     raise NotImplementedError
 
- #wtf this doesn't do anything even remotely similar to wrap, or useful in
 
- # HACK BAD FIXME UNBREAK ME BAD
 
- # I don't understand what this function does but I am using it in multiple places?
 
- def wrap(val, maxValue, minValue = None):
 
-     if (val > maxValue):
 
-         return (-1 * ((maxValue - val) + 1))
 
-     if ((minValue) and (val < minValue)):
 
-         return (val + maxValue)
 
-     return val
 
-     #TODO clean this up
 
- def layerMaskCompare(mask_a, mask_b):
 
-     compare = 0
 
-     for a, b in zip(mask_a, mask_b):
 
-         if (a != b):
 
-             compare+=1
 
-     if (compare == 0):
 
-         return True
 
-     return False
 
- def lerpVal(a, b, fac = 0.5):
 
-     return a + ( (b-a) * fac)
 
- def RibbonMeshEdgeLengths(m, ribbon):
 
-     tE = ribbon[0]; bE = ribbon[1]; c = ribbon[2]
 
-     lengths = []
 
-     for i in range( len( tE ) ): #tE and bE are same length
 
-         if (c == True):
 
-             v1NextInd = tE[wrap((i+1), len(tE) - 1)]
 
-         else:
 
-             v1NextInd = tE[cap((i+1) , len(tE) - 1 )]
 
-         v1 = m.vertices[tE[i]]; v1Next = m.vertices[v1NextInd]
 
-         if (c == True):
 
-             v2NextInd = bE[wrap((i+1), len(bE) - 1)]
 
-         else:
 
-             v2NextInd = bE[cap((i+1) , len(bE) - 1 )]
 
-         v2 = m.vertices[bE[i]]; v2Next = m.vertices[v2NextInd]
 
-         
 
-         v = v1.co.lerp(v2.co, 0.5); vNext = v1Next.co.lerp(v2Next.co, 0.5)
 
-         # get the center, edges may not be straight so total length 
 
-         #  of one edge may be more than the ribbon center's length
 
-         lengths.append(( v - vNext ).length)
 
-     return lengths
 
- def EnsureCurveIsRibbon(crv, defaultRadius = 0.1):
 
-     crvRadius = 0
 
-     if (crv.data.bevel_depth == 0):
 
-         crvRadius = crv.data.extrude
 
-     else: #Set ribbon from bevel depth
 
-         crvRadius = crv.data.bevel_depth
 
-         crv.data.bevel_depth = 0
 
-         crv.data.extrude = crvRadius
 
-     if (crvRadius == 0):
 
-         crv.data.extrude = defaultRadius
 
- def SetRibbonData(m, ribbon):
 
-     #maybe this could be incorporated into the DetectWireEdges function?
 
-     #maybe I can check for closed poly curves here? under what other circumstance
 
-     # will I find the ends of the wire have identical coordinates?
 
-     ribbonData = []
 
-     tE = ribbon[0].copy(); bE = ribbon[1].copy()# circle = ribbon[2]
 
-     #
 
-     lengths = RibbonMeshEdgeLengths(m, ribbon)
 
-     lengths.append(0)
 
-     totalLength = sum(lengths)
 
-     # m.calc_normals() #calculate normals
 
-     # it appears this has been removed.
 
-     for i, (t, b) in enumerate(zip(tE, bE)):
 
-         ind = wrap( (i + 1), len(tE) - 1 )
 
-         tNext = tE[ind]; bNext = bE[ind]
 
-         ribbonData.append(  ( (t,b), (tNext, bNext), lengths[i] ) )
 
-         #if this is a circle, the last v in vertData has a length, otherwise 0
 
-     return ribbonData, totalLength
 
- def mesh_from_curve(crv, context,):
 
-     """Utility function for converting a mesh to a curve
 
-        which will return the correct mesh even with modifiers"""
 
-     import bpy
 
-     if (len(crv.modifiers) > 0):
 
-         do_unlink = False
 
-         if (not context.scene.collection.all_objects.get(crv.name)):
 
-             context.collection.objects.link(crv) # i guess this forces the dg to update it?
 
-             do_unlink = True
 
-         dg = context.view_layer.depsgraph
 
-         # just gonna modify it for now lol
 
-         EnsureCurveIsRibbon(crv)
 
-         # try:
 
-         dg.update()
 
-         mOb = crv.evaluated_get(dg)
 
-         m = bpy.data.meshes.new_from_object(mOb)
 
-         m.name=crv.data.name+'_mesh'
 
-         if (do_unlink):
 
-             context.collection.objects.unlink(crv)
 
-         return m
 
-         # except: #dg is None?? # FIX THIS BUG BUG BUG
 
-         #     print ("Warning: could not apply modifiers on curve")
 
-         #     return bpy.data.meshes.new_from_object(crv)
 
-     else: # (ಥ﹏ಥ) why can't I just use this !
 
-         # for now I will just do it like this
 
-         EnsureCurveIsRibbon(crv)
 
-         return bpy.data.meshes.new_from_object(crv)
 
- def DetectRibbon(f, bm, skipMe):
 
-     fFirst = f.index
 
-     cont = True
 
-     circle = False
 
-     tEdge, bEdge = [],[]
 
-     while (cont == True):
 
-         skipMe.add(f.index)
 
-         tEdge.append (f.loops[0].vert.index) # top-left
 
-         bEdge.append (f.loops[3].vert.index) # bottom-left
 
-         nEdge = bm.edges.get([f.loops[1].vert, f.loops[2].vert])
 
-         nFaces = nEdge.link_faces
 
-         if (len(nFaces) == 1): 
 
-             cont = False
 
-         else:
 
-             for nFace in nFaces:
 
-                 if (nFace != f):
 
-                     f = nFace
 
-                     break
 
-             if (f.index == fFirst):
 
-                 cont = False
 
-                 circle = True
 
-         if (cont == False): # we've reached the end, get the last two:
 
-             tEdge.append (f.loops[1].vert.index) # top-right
 
-             bEdge.append (f.loops[2].vert.index) # bottom-right
 
-             # this will create a loop for rings -- 
 
-             #  "the first shall be the last and the last shall be first"
 
-     return (tEdge,bEdge,circle)
 
- def DetectRibbons(m, fReport = None):
 
-     # Returns list of vertex indices belonging to ribbon mesh edges
 
-     # NOTE: this assumes a mesh object with only ribbon meshes
 
-     # ---DO NOT call this script with a mesh that isn't a ribbon!--- #
 
-     import bmesh
 
-     bm = bmesh.new()
 
-     bm.from_mesh(m)
 
-     mIslands, mIsland = [], []
 
-     skipMe = set()
 
-     bm.faces.ensure_lookup_table()
 
-     #first, get a list of mesh islands
 
-     for f in bm.faces:
 
-         if (f.index in skipMe):
 
-             continue #already done here
 
-         checkMe = [f]
 
-         while (len(checkMe) > 0):
 
-             facesFound = 0
 
-             for f in checkMe:
 
-                 if (f.index in skipMe):
 
-                     continue #already done here
 
-                 mIsland.append(f)
 
-                 skipMe.add(f.index)
 
-                 for e in f.edges:
 
-                     checkMe += e.link_faces
 
-             if (facesFound == 0):
 
-                 #this is the last iteration
 
-                 mIslands.append(mIsland)
 
-                 checkMe, mIsland = [], []
 
-     ribbons = []
 
-     skipMe = set() # to store ends already checked
 
-     for mIsl in mIslands:
 
-         ribbon = None
 
-         first = float('inf')
 
-         for f in mIsl:
 
-             if (f.index in skipMe):
 
-                 continue #already done here
 
-             if (f.index < first):
 
-                 first = f.index
 
-             adjF = 0
 
-             for e in f.edges:
 
-                 adjF+= (len(e.link_faces) - 1)
 
-                 # every face other than this one is added to the list
 
-             if (adjF == 1):
 
-                 ribbon = (DetectRibbon(f, bm, skipMe) )
 
-                 break
 
-         if (ribbon == None):
 
-             ribbon = (DetectRibbon(bm.faces[first], bm, skipMe) )
 
-         ribbons.append(ribbon)
 
-     # print (ribbons)
 
-     return ribbons
 
- def data_from_ribbon_mesh(m, factorsList, mat, ribbons = None, fReport = None):
 
-     #Note, factors list should be equal in length the the number of wires
 
-     #Now working for multiple wires, ugly tho
 
-     if (ribbons == None):
 
-         ribbons = DetectRibbons(m, fReport=fReport)
 
-         if (ribbons is None):
 
-             if (fReport):
 
-                 fReport(type = {'ERROR'}, message="No ribbon to get data from.")
 
-             else:  
 
-                 print ("No ribbon to get data from.")
 
-             return None
 
-     ret = []
 
-     for factors, ribbon in zip(factorsList, ribbons):
 
-         points  = []
 
-         widths  = []
 
-         normals = []
 
-         ribbonData, totalLength = SetRibbonData(m, ribbon)
 
-         for fac in factors:
 
-             if (fac == 0):
 
-                 data = ribbonData[0]
 
-                 curFac = 0
 
-             elif (fac == 1):
 
-                 data = ribbonData[-1]
 
-                 curFac = 0
 
-             else:
 
-                 targetLength = totalLength * fac
 
-                 data = ribbonData[0]
 
-                 curLength = 0
 
-                 for ( (t, b), (tNext, bNext), length,) in ribbonData:
 
-                     if (curLength >= targetLength):
 
-                         break
 
-                     curLength += length
 
-                     data = ( (t, b), (tNext, bNext), length,)
 
-                 targetLengthAtEdge = (curLength - targetLength)
 
-                 if (targetLength == 0):
 
-                     curFac = 0
 
-                 elif (targetLength == totalLength):
 
-                     curFac = 1
 
-                 else:
 
-                     try:
 
-                         curFac = 1 - (targetLengthAtEdge/ data[2]) #length
 
-                     except ZeroDivisionError:
 
-                         curFac = 0
 
-                         if (fReport):
 
-                             fReport(type = {'WARNING'}, message="Division by Zero.")
 
-                         else:  
 
-                             prRed ("Division by Zero Error in evaluating data from curve.")
 
-             t1 = m.vertices[data[0][0]]; b1 = m.vertices[data[0][1]]
 
-             t2 = m.vertices[data[1][0]]; b2 = m.vertices[data[1][1]]
 
-             #location
 
-             loc1 = (t1.co).lerp(b1.co, 0.5)
 
-             loc2 = (t2.co).lerp(b2.co, 0.5)
 
-             #width
 
-             w1 = (t1.co - b1.co).length/2
 
-             w2 = (t2.co - b2.co).length/2 #radius, not diameter
 
-             #normal
 
-             n1 = (t1.normal).slerp(b1.normal, 0.5)
 
-             n2 = (t1.normal).slerp(b2.normal, 0.5)
 
-             if ((data[0][0] > data[1][0]) and (ribbon[2] == False)):
 
-                 curFac = 0
 
-                 #don't interpolate if at the end of a ribbon that isn't circular
 
-             if ( 0 < curFac < 1):
 
-                 outPoint = loc1.lerp(loc2, curFac)
 
-                 outNorm  = n1.lerp(n2, curFac)
 
-                 outWidth = w1 + ( (w2-w1) * curFac)
 
-             elif (curFac <= 0):
 
-                 outPoint = loc1.copy()
 
-                 outNorm = n1
 
-                 outWidth = w1
 
-             elif (curFac >= 1):
 
-                 outPoint = loc2.copy()
 
-                 outNorm = n2
 
-                 outWidth = w2
 
-             outPoint = mat @ outPoint
 
-             outNorm.normalize()
 
-             points.append ( outPoint.copy() ) #copy because this is an actual vertex location
 
-             widths.append ( outWidth )
 
-             normals.append( outNorm )
 
-         ret.append( (points, widths, normals) )
 
-     return ret # this is a list of tuples containing three lists
 
- #This bisection search is generic, and it searches based on the
 
- # magnitude of the error, rather than the sign.
 
- # If the sign of the error is meaningful, a simpler function
 
- # can be used.
 
- def do_bisect_search_by_magnitude(
 
-         owner, 
 
-         attribute,
 
-         index = None,
 
-         test_function = None,
 
-         modify = None,
 
-         max_iterations = 10000,
 
-         threshold = 0.0001,
 
-         thresh2   = 0.0005,
 
-         context = None,
 
-         update_dg = None,
 
-     ):
 
-     from math import floor
 
-     i = 0; best_so_far = 0; best = float('inf')
 
-     min = 0; center = max_iterations//2; max = max_iterations
 
-     # enforce getting the absolute value, in case the function has sign information
 
-     # The sign may be useful in a sign-aware bisect search, but this one is more robust!
 
-     test = lambda : abs(test_function(owner, attribute, index, context = context,))
 
-     while (i <= max_iterations):
 
-         upper = (max - ((max-center))//2)
 
-         modify(owner, attribute, index, upper, context = context); error1 = test()
 
-         lower = (center - ((center-min))//2)
 
-         modify(owner, attribute, index, lower, context = context); error2 = test()
 
-         if (error1 < error2):
 
-             min = center
 
-             center, check = upper, upper
 
-             error = error1
 
-         else:
 
-             max = center
 
-             center, check = lower, lower
 
-             error = error2
 
-         if (error <= threshold) or (min == max-1):
 
-             break
 
-         if (error < thresh2):
 
-             j = min
 
-             while (j < max):
 
-                 modify(owner, attribute, index, j * 1/max_iterations, context = context)
 
-                 error = test()
 
-                 if (error < best):
 
-                     best_so_far = j; best = error
 
-                 if (error <= threshold):
 
-                     break
 
-                 j+=1
 
-             else: # loop has completed without finding a solution
 
-                 i = best_so_far; error = test()
 
-                 modify(owner, attribute, index, best_so_far, context = context)
 
-                 break
 
-         if (error < best):
 
-             best_so_far = check; best = error
 
-         i+=1
 
-         if update_dg:
 
-             update_dg.update()
 
-     else: # Loop has completed without finding a solution
 
-         i = best_so_far
 
-         modify(owner, attribute, best_so_far, context = context); i+=1
 
 
  |