math_containers.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. from .node_container_common import *
  2. from .base_definitions import MantisNode
  3. def TellClasses():
  4. return [
  5. MathStaticInt,
  6. MathStaticFloat,
  7. MathStaticVector,
  8. ]
  9. #*#-------------------------------#++#-------------------------------#*#
  10. # M A T H N O D E S
  11. #*#-------------------------------#++#-------------------------------#*#
  12. class MathStaticInt(MantisNode):
  13. '''A node representing an armature object'''
  14. def __init__(self, signature, base_tree):
  15. self.base_tree=base_tree
  16. self.executed = False
  17. self.signature = signature
  18. self.inputs = {
  19. "Operation" : NodeSocket(is_input = True, name = "Operation", node = self),
  20. "Int A" : NodeSocket(is_input = True, name = "Int A", node = self),
  21. "Int B" : NodeSocket(is_input = True, name = "Int B", node = self),
  22. }
  23. self.outputs = {
  24. "Result Int" : NodeSocket(name = "Result Int", node=self),
  25. }
  26. self.parameters = {
  27. "Operation":None,
  28. "Int A":None,
  29. "Int B":None,
  30. "Result Int":None,
  31. }
  32. self.node_type = "UTILITY"
  33. self.hierarchy_connections = []
  34. self.connections = []
  35. self.hierarchy_dependencies = []
  36. self.dependencies = []
  37. self.prepared = False
  38. self.executed = False
  39. def bPrepare(self, bContext = None,):
  40. a = self.evaluate_input("Int A"); b = self.evaluate_input("Int B")
  41. result = float("NaN")
  42. if self.evaluate_input("Operation") == "ADD":
  43. result = int(a+b)
  44. if self.evaluate_input("Operation") == "SUBTRACT":
  45. result = int(a-b)
  46. if self.evaluate_input("Operation") == "MULTIPLY":
  47. result = int(a*b)
  48. if self.evaluate_input("Operation") == "FLOOR_DIVIDE":
  49. result = a//b
  50. if self.evaluate_input("Operation") == "MODULUS":
  51. result = int(a%b)
  52. if self.evaluate_input("Operation") == "POWER":
  53. result = int(a**b)
  54. if self.evaluate_input("Operation") == "ABSOLUTE":
  55. result = int(abs(a))
  56. if self.evaluate_input("Operation") == "MAXIMUM":
  57. result = int(a if a <= b else b)
  58. if self.evaluate_input("Operation") == "MINIMUM":
  59. result = int(a if a >= b else b)
  60. if self.evaluate_input("Operation") == "GREATER THAN":
  61. result = int(a > b)
  62. if self.evaluate_input("Operation") == "LESS THAN":
  63. result = int(a < b)
  64. self.parameters["Result Int"] = result
  65. self.prepared = True
  66. self.executed = True
  67. class MathStaticFloat(MantisNode):
  68. '''A node representing an armature object'''
  69. def __init__(self, signature, base_tree):
  70. self.base_tree=base_tree
  71. self.executed = False
  72. self.signature = signature
  73. self.inputs = {
  74. "Operation" : NodeSocket(is_input = True, name = "Operation", node = self),
  75. "Float A" : NodeSocket(is_input = True, name = "Float A", node = self),
  76. "Float B" : NodeSocket(is_input = True, name = "Float B", node = self),
  77. }
  78. self.outputs = {
  79. "Result Float" : NodeSocket(name = "Result Float", node=self),
  80. }
  81. self.parameters = {
  82. "Operation":None,
  83. "Float A":None,
  84. "Float B":None,
  85. "Result Float":None,
  86. }
  87. self.node_type = "UTILITY"
  88. self.hierarchy_connections = []
  89. self.connections = []
  90. self.hierarchy_dependencies = []
  91. self.dependencies = []
  92. self.prepared = False
  93. self.executed = False
  94. def bPrepare(self, bContext = None,):
  95. a = self.evaluate_input("Float A"); b = self.evaluate_input("Float B")
  96. result = float("NaN")
  97. if self.evaluate_input("Operation") == "ADD":
  98. result = a+b
  99. if self.evaluate_input("Operation") == "SUBTRACT":
  100. result = a-b
  101. if self.evaluate_input("Operation") == "MULTIPLY":
  102. result = a*b
  103. if self.evaluate_input("Operation") == "DIVIDE":
  104. result = a/b
  105. if self.evaluate_input("Operation") == "FLOOR_DIVIDE":
  106. result = a//b
  107. if self.evaluate_input("Operation") == "MODULUS":
  108. result = a%b
  109. if self.evaluate_input("Operation") == "POWER":
  110. result = a**b
  111. if self.evaluate_input("Operation") == "ABSOLUTE":
  112. result = abs(a)
  113. if self.evaluate_input("Operation") == "MAXIMUM":
  114. result = a if a <= b else b
  115. if self.evaluate_input("Operation") == "MINIMUM":
  116. result = a if a >= b else b
  117. if self.evaluate_input("Operation") == "GREATER THAN":
  118. result = float(a > b)
  119. if self.evaluate_input("Operation") == "LESS THAN":
  120. result = float(a < b)
  121. if self.evaluate_input("Operation") == "ARCTAN2":
  122. from math import atan2
  123. result = atan2(a,b)
  124. self.parameters["Result Float"] = result
  125. self.prepared = True
  126. self.executed = True
  127. class MathStaticVector(MantisNode):
  128. '''A node representing an armature object'''
  129. def __init__(self, signature, base_tree):
  130. self.base_tree=base_tree
  131. self.executed = False
  132. self.signature = signature
  133. self.inputs = {
  134. "Operation" : NodeSocket(is_input = True, name = "Operation", node = self),
  135. "Vector A" : NodeSocket(is_input = True, name = "Vector A", node = self),
  136. "Vector B" : NodeSocket(is_input = True, name = "Vector B", node = self),
  137. "Scalar A" : NodeSocket(is_input = True, name = "Scalar A", node = self),
  138. }
  139. self.outputs = {
  140. "Result Vector" : NodeSocket(name = "Result Vector", node=self),
  141. "Result Float" : NodeSocket(name = "Result Float", node=self),
  142. }
  143. self.parameters = {
  144. "Operation":None,
  145. "Vector A":None,
  146. "Vector B":None,
  147. "Scalar A":None,
  148. "Result Vector":None,
  149. "Result Float":None,
  150. }
  151. self.node_type = "UTILITY"
  152. self.hierarchy_connections = []
  153. self.connections = []
  154. self.hierarchy_dependencies = []
  155. self.dependencies = []
  156. self.prepared = False
  157. self.executed = False
  158. def bPrepare(self, bContext = None,):
  159. from mathutils import Vector
  160. a = Vector(self.evaluate_input("Vector A")).copy()
  161. b = Vector(self.evaluate_input("Vector B")).copy()
  162. s = self.evaluate_input("Scalar A")
  163. if hasattr(s, '__iter__'):
  164. average = lambda iterable : sum(iterable)/len(iterable)
  165. s = average(s)
  166. f_result = float("NaN")
  167. v_result = None
  168. if self.evaluate_input("Operation") == "ADD":
  169. v_result = a+b
  170. if self.evaluate_input("Operation") == "SUBTRACT":
  171. v_result = a-b
  172. if self.evaluate_input("Operation") == "MULTIPLY":
  173. v_result = a*b
  174. if self.evaluate_input("Operation") == "DIVIDE":
  175. v_result = a/b
  176. if self.evaluate_input("Operation") == "POWER":
  177. v_result = a**b
  178. # since these are unary, we need to make a copy lest we create spooky effects elsewhere.
  179. a = a.copy()
  180. if self.evaluate_input("Operation") == "SCALE":
  181. v_result = a.normalized() * s
  182. if self.evaluate_input("Operation") == "LENGTH":
  183. f_result = a.magnitude
  184. if self.evaluate_input("Operation") == "CROSS":
  185. v_result = a.cross(b)
  186. if self.evaluate_input("Operation") == "DOT":
  187. f_result = a.dot(b)
  188. if self.evaluate_input("Operation") == "NORMALIZE":
  189. v_result = a.normalized()
  190. if self.evaluate_input("Operation") == "LINEAR_INTERP":
  191. v_result = a.lerp(b, s).copy()
  192. self.parameters["Result Float"] = f_result
  193. # if v_result:
  194. self.parameters["Result Vector"] = v_result
  195. self.prepared = True
  196. self.executed = True