utilities.py 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187
  1. #fool: should be wrColor like prColor... dumb
  2. def wrapRed(skk): return "\033[91m{}\033[00m".format(skk)
  3. def wrapGreen(skk): return "\033[92m{}\033[00m".format(skk)
  4. def wrapPurple(skk): return "\033[95m{}\033[00m".format(skk)
  5. def wrapWhite(skk): return "\033[97m{}\033[00m".format(skk)
  6. def wrapOrange(skk): return "\033[0;33m{}\033[00m".format(skk)
  7. # these should reimplement the print interface..
  8. def prRed(*args): print (*[wrapRed(arg) for arg in args])
  9. def prGreen(*args): print (*[wrapGreen(arg) for arg in args])
  10. def prPurple(*args): print (*[wrapPurple(arg) for arg in args])
  11. def prWhite(*args): print (*[wrapWhite(arg) for arg in args])
  12. def prOrange(*args): print (*[wrapOrange(arg) for arg in args])
  13. # add THIS to the top of a file for easy access:
  14. # from mantis.utilities import (prRed, prGreen, prPurple, prWhite,
  15. # prOrange,
  16. # wrapRed, wrapGreen, wrapPurple, wrapWhite,
  17. # wrapOrange,)
  18. # SOME PRINTS
  19. #DO! Figure out what the hell this does
  20. # then re-write it in a simpler, cleaner way
  21. # that ignores groups because it gets lines from a parsed tree
  22. # ideally I can use the seeking-lines instead of the socket/tree lines
  23. # since those allow the function to travel through the tree.
  24. # not sure if the above comment still has any place here....
  25. def print_lines(lines):
  26. printstring, string = "", ""
  27. cur_g = 0
  28. for line in lines:
  29. string += wrapRed("%i: " % len(line))
  30. for s, g in line:
  31. new_g = len(g) -1
  32. difference = new_g - cur_g
  33. if difference > 0:
  34. string = string[:-1] # get rid of leading space
  35. for i in range(difference):
  36. string += " [ "
  37. elif difference < 0:
  38. string = string[:-4]# get rid of arrow
  39. for i in range(abs(difference)):
  40. string += " ] "
  41. string += "-> "
  42. cur_g = new_g
  43. wrap=wrapWhite
  44. if (s.node.bl_idname in ['UtilitySwitch', 'UtilityDriver', 'UtilityDriverVariable']):
  45. wrap = wrapPurple
  46. elif (s.node.bl_idname in ['xFormArmatureNode', 'xFormBoneNode']):
  47. wrap = wrapOrange
  48. elif (s.node.bl_idname in ['LinkStretchTo']):
  49. wrap = wrapRed
  50. elif ('Link' in s.node.bl_idname):
  51. wrap = wrapGreen
  52. string += wrap(s.node.name + ":" + s.name) + " -> "
  53. string = string[:-4]
  54. while cur_g > 0:
  55. cur_g -= 1
  56. string += " ] "
  57. cur_g, difference = 0,0
  58. printstring +=string + "\n\n"; string = ""
  59. return printstring
  60. # why is this not printing groups in brackets?
  61. def print_socket_signature(sig):
  62. string = ""
  63. for i, e in enumerate(sig):
  64. if (e == "NONE"):
  65. continue
  66. wrap = wrapWhite
  67. if (i == len(sig)-2):
  68. wrap = wrapRed
  69. elif (i == len(sig) - 1):
  70. wrap = wrapGreen
  71. string+= wrap(e) + ":"
  72. return string[:-1]
  73. def print_node_signature(sig,):
  74. string = ""
  75. for i, e in enumerate(sig):
  76. if (e == "NONE"):
  77. continue
  78. wrap = wrapWhite
  79. if (i == len(sig)-2):
  80. wrap = wrapRed
  81. elif (i == len(sig) - 1):
  82. continue
  83. string+= wrap(e) + ":"
  84. return string[:-1]
  85. def print_parsed_node(parsed_node):
  86. # do: make this consistent with the above
  87. string = ""
  88. for k, v in parsed_node.items():
  89. if isinstance(v, dict):
  90. string += "%s:\n" % (k)
  91. for k1, v1 in v.items():
  92. string += " %s: %s\n" % (k1, v1)
  93. else:
  94. string += "%s: %s\n" % (k, v )
  95. return string
  96. ## SIGNATURES ##
  97. def get_socket_signature(line_element):
  98. """
  99. This function creates a convenient, hashable signature for
  100. identifying a node path.
  101. """
  102. if not line_element:
  103. return None
  104. signature, socket, tree_path = [], line_element[0], line_element[1]
  105. for n in tree_path:
  106. if hasattr(n, "name"):
  107. signature.append(n.name)
  108. else:
  109. signature.append("NONE")
  110. signature.append(socket.node.name); signature.append(socket.identifier)
  111. return tuple(signature)
  112. def tuple_of_line(line):
  113. # For creating a set of lines
  114. return tuple(tuple_of_line_element(e) for e in line)
  115. def tuple_of_line_element(line_element):
  116. return (line_element[0], tuple(line_element[1]))
  117. # A fuction for getting to the end of a Reroute.
  118. def socket_seek(start_link, links):
  119. link = start_link
  120. while(link.from_socket):
  121. for newlink in links:
  122. if link.from_socket.node.inputs:
  123. if newlink.to_socket == link.from_socket.node.inputs[0]:
  124. link=newlink; break
  125. else:
  126. break
  127. return link.from_socket
  128. # this creates fake links that have the same interface as Blender's
  129. # so that I can bypass Reroutes
  130. def clear_reroutes(links):
  131. from .node_container_common import DummyLink
  132. kept_links, rerouted_starts = [], []
  133. rerouted = []
  134. all_links = links.copy()
  135. while(all_links):
  136. link = all_links.pop()
  137. to_cls = link.to_socket.node.bl_idname
  138. from_cls = link.from_socket.node.bl_idname
  139. reroute_classes = ["NodeReroute"]
  140. if (to_cls in reroute_classes and
  141. from_cls in reroute_classes):
  142. rerouted.append(link)
  143. elif (to_cls in reroute_classes and not
  144. from_cls in reroute_classes):
  145. rerouted.append(link)
  146. elif (from_cls in reroute_classes and not
  147. to_cls in reroute_classes):
  148. rerouted_starts.append(link)
  149. else:
  150. kept_links.append(link)
  151. for start in rerouted_starts:
  152. from_socket = socket_seek(start, rerouted)
  153. new_link = DummyLink(from_socket=from_socket, to_socket=start.to_socket, nc_from=None, nc_to=None, )
  154. kept_links.append(new_link)
  155. return kept_links
  156. def tree_from_nc(sig, base_tree):
  157. if (sig[0] == 'MANTIS_AUTOGENERATED'):
  158. sig = sig[:-2] # cut off the end part of the signature. (Why am I doing this??) # because it uses socket.name and socket.identifier
  159. # this will lead to totally untraceble bugs in the event of a change in how signatures are assigned
  160. tree = base_tree
  161. for i, path_item in enumerate(sig):
  162. if (i == 0) or (i == len(sig) - 1):
  163. continue
  164. tree = tree.nodes.get(path_item).node_tree
  165. return tree
  166. def get_node_prototype(sig, base_tree):
  167. return tree_from_nc(sig, base_tree).nodes.get( sig[-1] )
  168. ##################################################################################################
  169. # groups and changing sockets -- this is used extensively by Schema.
  170. ##################################################################################################
  171. def get_socket_maps(node):
  172. maps = [{}, {}]
  173. node_collection = ["inputs", "outputs"]
  174. links = ["from_socket", "to_socket"]
  175. for collection, map, link in zip(node_collection, maps, links):
  176. for sock in getattr(node, collection):
  177. if sock.is_linked:
  178. map[sock.identifier]=[ getattr(l, link) for l in sock.links ]
  179. else:
  180. map[sock.identifier]=sock.get("default_value")
  181. return maps
  182. def do_relink(node, s, map, in_out='INPUT', parent_name = ''):
  183. tree = node.id_data; interface_in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT'
  184. if hasattr(node, "node_tree"):
  185. tree = node.node_tree
  186. interface_in_out=in_out
  187. from bpy.types import NodeSocket
  188. get_string = '__extend__'
  189. if s: get_string = s.identifier
  190. if val := map.get(get_string):
  191. if isinstance(val, list):
  192. for sub_val in val:
  193. # this will only happen once because it assigns s, so it is safe to do in the for loop.
  194. if s is None:
  195. # prGreen("zornpt")
  196. name = unique_socket_name(node, sub_val, tree)
  197. sock_type = sub_val.bl_idname
  198. if parent_name:
  199. interface_socket = update_interface(tree.interface, name, interface_in_out, sock_type, parent_name)
  200. if in_out =='INPUT':
  201. s = node.inputs.new(sock_type, name, identifier=interface_socket.identifier)
  202. else:
  203. s = node.outputs.new(sock_type, name, identifier=interface_socket.identifier)
  204. if parent_name == 'Array': s.display_shape='SQUARE_DOT'
  205. # then move it up and delete the other link.
  206. # this also needs to modify the interface of the node tree.
  207. #
  208. if isinstance(sub_val, NodeSocket):
  209. if in_out =='INPUT':
  210. node.id_data.links.new(input=sub_val, output=s)
  211. else:
  212. node.id_data.links.new(input=s, output=sub_val)
  213. else:
  214. try:
  215. s.default_value = val
  216. except (AttributeError, ValueError): # must be readonly or maybe it doesn't have a d.v.
  217. pass
  218. def update_interface(interface, name, in_out, sock_type, parent_name):
  219. if parent_name:
  220. if not (interface_parent := interface.items_tree.get(parent_name)):
  221. interface_parent = interface.new_panel(name=parent_name)
  222. socket = interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
  223. if parent_name == 'Connection':
  224. in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT' # flip this make sure connections always do both
  225. interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
  226. return socket
  227. else:
  228. raise RuntimeError(wrapRed("Cannot add interface item to tree without specifying type."))
  229. def relink_socket_map(node, node_collection, map, item, in_out=None):
  230. from bpy.types import NodeSocket
  231. if not in_out: in_out=item.in_out
  232. if node.bl_idname in ['MantisSchemaGroup'] and item.parent and item.parent.name == 'Array':
  233. multi = False
  234. if in_out == 'INPUT':
  235. multi=True
  236. s = node_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier, use_multi_input=multi)
  237. # s.link_limit = node.schema_length TODO
  238. else:
  239. s = node_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier)
  240. if item.parent.name == 'Array': s.display_shape = 'SQUARE_DOT'
  241. do_relink(node, s, map)
  242. def unique_socket_name(node, other_socket, tree):
  243. name_stem = other_socket.bl_label; num=0
  244. # if hasattr(other_socket, "default_value"):
  245. # name_stem = type(other_socket.default_value).__name__
  246. for item in tree.interface.items_tree:
  247. if item.item_type == 'PANEL': continue
  248. if other_socket.is_output and item.in_out == 'INPUT': continue
  249. if not other_socket.is_output and item.in_out == 'OUTPUT': continue
  250. if name_stem in item.name: num+=1
  251. name = name_stem + '.' + str(num).zfill(3)
  252. return name
  253. ##############################
  254. # READ TREE and also Schema Solve!
  255. ##############################
  256. def init_connections(nc):
  257. c, hc = [], []
  258. for i in nc.outputs.values():
  259. for l in i.links:
  260. # if l.from_node != nc:
  261. # continue
  262. if l.is_hierarchy:
  263. hc.append(l.to_node)
  264. c.append(l.to_node)
  265. nc.hierarchy_connections = hc
  266. nc.connections = c
  267. def init_dependencies(nc):
  268. c, hc = [], []
  269. for i in nc.inputs.values():
  270. for l in i.links:
  271. # if l.to_node != nc:
  272. # continue
  273. if l.is_hierarchy:
  274. hc.append(l.from_node)
  275. c.append(l.from_node)
  276. nc.hierarchy_dependencies = hc
  277. nc.dependencies = c
  278. # schema_input_types = [
  279. # 'SchemaIndex',
  280. # 'SchemaArrayInput',
  281. # 'SchemaArrayInputGet',
  282. # 'SchemaConstInput',
  283. # 'SchemaIncomingConnection',
  284. # ]
  285. # schema_output_types = [
  286. # 'SchemaArrayOutput',
  287. # 'SchemaConstOutput',
  288. # 'SchemaOutgoingConnection',
  289. # ]
  290. from .base_definitions import from_name_filter, to_name_filter
  291. def init_schema_dependencies(schema, all_nc):
  292. schema_name = schema.signature[-1]
  293. all_input_nodes = []
  294. all_output_nodes = []
  295. # all_inernal_nodes = []
  296. # for nc in all_nc.values():
  297. # for t in schema_input_types:
  298. # if nc.signature == (*schema.signature, t):
  299. # all_input_nodes.append(nc)
  300. # for t in schema_output_types:
  301. # if nc.signature == (*schema.signature, t):
  302. # all_output_nodes.append(nc)
  303. # prOrange (schema.connections)
  304. # print (schema.hierarchy_connections)
  305. # prOrange (schema.dependencies)
  306. # prOrange (schema.hierarchy_dependencies)
  307. # so the challenge is to map these and check both ends
  308. from .base_definitions import from_name_filter, to_name_filter
  309. # go through the interface items then of course
  310. from .utilities import get_node_prototype
  311. np = get_node_prototype(schema.signature, schema.base_tree)
  312. tree = np.node_tree
  313. schema.dependencies = []
  314. schema.hierarchy_dependencies = []
  315. for item in tree.interface.items_tree:
  316. if item.item_type == 'PANEL':
  317. continue
  318. hierarchy = True
  319. hierarchy_reason=""
  320. if item.in_out == 'INPUT':
  321. c = schema.dependencies
  322. hc = schema.hierarchy_dependencies
  323. if item.parent and item.parent.name == 'Array':
  324. for t in ['SchemaArrayInput', 'SchemaArrayInputGet']:
  325. if (nc := all_nc.get( (*schema.signature, t) )):
  326. for to_link in nc.outputs[item.name].links:
  327. if to_link.to_socket in to_name_filter:
  328. # hierarchy_reason='a'
  329. hierarchy = False
  330. for from_link in schema.inputs[item.identifier].links:
  331. if from_link.from_socket in from_name_filter:
  332. hierarchy = False
  333. # hierarchy_reason='b'
  334. if from_link.from_node not in c:
  335. if hierarchy:
  336. hc.append(from_link.from_node)
  337. c.append(from_link.from_node)
  338. if item.parent and item.parent.name == 'Constant':
  339. if nc := all_nc.get((*schema.signature, 'SchemaConstInput')):
  340. for to_link in nc.outputs[item.name].links:
  341. if to_link.to_socket in to_name_filter:
  342. # hierarchy_reason='c'
  343. hierarchy = False
  344. for from_link in schema.inputs[item.identifier].links:
  345. if from_link.from_socket in from_name_filter:
  346. # hierarchy_reason='d'
  347. hierarchy = False
  348. if from_link.from_node not in c:
  349. if hierarchy:
  350. hc.append(from_link.from_node)
  351. c.append(from_link.from_node)
  352. if item.parent and item.parent.name == 'Connection':
  353. if nc := all_nc.get((*schema.signature, 'SchemaIncomingConnection')):
  354. for to_link in nc.outputs[item.name].links:
  355. if to_link.to_socket in to_name_filter:
  356. # hierarchy_reason='e'
  357. hierarchy = False
  358. for from_link in schema.inputs[item.identifier].links:
  359. if from_link.from_socket in from_name_filter:
  360. # hierarchy_reason='f'
  361. hierarchy = False
  362. if from_link.from_node not in c:
  363. if hierarchy:
  364. hc.append(from_link.from_node)
  365. c.append(from_link.from_node)
  366. # prPurple(item.in_out)
  367. # if hierarchy:
  368. # prOrange(item.name)
  369. # else:
  370. # prWhite(item.name)
  371. # print(hierarchy_reason)
  372. # else:
  373. # c = schema.connections
  374. # hc = schema.hierarchy_connections
  375. # if item.parent and item.parent.name == 'Array':
  376. # if nc := all_nc.get((*schema.signature, 'SchemaArrayOutput')):
  377. # for from_link in nc.inputs[item.name].links:
  378. # if from_link.from_socket in from_name_filter:
  379. # hierarchy = False
  380. # for to_link in schema.outputs[item.identifier].links:
  381. # if to_link.to_socket in to_name_filter:
  382. # hierarchy = False
  383. # if item.parent and item.parent.name == 'Constant':
  384. # if nc := all_nc.get((*schema.signature, 'SchemaConstOutput')):
  385. # for from_link in nc.inputs[item.name].links:
  386. # if from_link.from_socket in from_name_filter:
  387. # hierarchy = False
  388. # for to_link in schema.outputs[item.identifier].links:
  389. # if to_link.to_socket in to_name_filter:
  390. # hierarchy = False
  391. # if item.parent and item.parent.name == 'Connection':
  392. # if nc := all_nc.get((*schema.signature, 'SchemaOutgoingConnection')):
  393. # for from_link in nc.inputs[item.name].links:
  394. # if from_link.from_socket in from_name_filter:
  395. # hierarchy = False
  396. # for to_link in schema.outputs[item.identifier].links:
  397. # if to_link.to_socket in to_name_filter:
  398. # hierarchy = False
  399. # for nc in all_input_nodes:
  400. # for output in nc.outputs.values():
  401. # for l in output.links:
  402. # if l.to_socket in to_name_filter:
  403. # print("not hierarchy", l.to_socket)
  404. # else:
  405. # print("hierarchy", l.to_socket)
  406. # for inp in schema.inputs.values():
  407. # for l in inp.links:
  408. # if l.from_socket in from_name_filter:
  409. # print("not hierarchy", l.from_socket)
  410. # else:
  411. # print("hierarchy", l.from_socket)
  412. # we need to get dependencies and connections
  413. # but we can use the same method to do each
  414. # prPurple (schema.connections)
  415. # # print (schema.hierarchy_connections)
  416. # prPurple (schema.dependencies)
  417. # prPurple (schema.hierarchy_dependencies)
  418. # #
  419. def check_and_add_root(n, roots, include_non_hierarchy=False):
  420. # if not (hasattr(n, 'inputs')) or ( len(n.inputs) == 0):
  421. # roots.append(n)
  422. # elif (hasattr(n, 'inputs')):
  423. # for inp in n.inputs.values():
  424. # if inp.is_linked: return
  425. if include_non_hierarchy == True and len(n.dependencies) > 0:
  426. return
  427. elif len(n.hierarchy_dependencies) > 0:
  428. return
  429. roots.append(n)
  430. def get_link_in_out(link):
  431. from .base_definitions import replace_types
  432. from_name, to_name = link.from_socket.node.name, link.to_socket.node.name
  433. # catch special bl_idnames and bunch the connections up
  434. if link.from_socket.node.bl_idname in replace_types:
  435. from_name = link.from_socket.node.bl_idname
  436. if link.to_socket.node.bl_idname in replace_types:
  437. to_name = link.to_socket.node.bl_idname
  438. return from_name, to_name
  439. def link_node_containers(tree_path_names, link, local_nc, from_suffix='', to_suffix=''):
  440. dummy_types = ["DUMMY", "DUMMY_SCHEMA"]
  441. from_name, to_name = get_link_in_out(link)
  442. nc_from = local_nc.get( (*tree_path_names, from_name+from_suffix) )
  443. nc_to = local_nc.get( (*tree_path_names, to_name+to_suffix))
  444. if (nc_from and nc_to):
  445. from_s, to_s = link.from_socket.name, link.to_socket.name
  446. if nc_to.node_type in dummy_types: to_s = link.to_socket.identifier
  447. if nc_from.node_type in dummy_types: from_s = link.from_socket.identifier
  448. try:
  449. connection = nc_from.outputs[from_s].connect(node=nc_to, socket=to_s, sort_id=link.multi_input_sort_id)
  450. if connection is None:
  451. prWhite(f"Already connected: {from_name}:{from_s}->{to_name}:{to_s}")
  452. return connection
  453. except KeyError as e:
  454. prRed(f"{nc_from}:{from_s} or {nc_to}:{to_s} missing; review the connections printed below:")
  455. print (nc_from.outputs.keys())
  456. print (nc_to.inputs.keys())
  457. raise e
  458. else:
  459. prRed(nc_from, nc_to, (*tree_path_names, from_name+from_suffix), (*tree_path_names, to_name+to_suffix))
  460. # for nc in local_nc.values():
  461. # prOrange(nc)
  462. raise RuntimeError(wrapRed("Link not connected: %s -> %s in tree %s" % (from_name, to_name, tree_path_names[-1])))
  463. def get_all_dependencies(nc):
  464. """ Given a NC, find all dependencies for the NC as a dict of nc.signature:nc"""
  465. nodes = []
  466. can_descend = True
  467. check_nodes = [nc]
  468. while (len(check_nodes) > 0):
  469. node = check_nodes.pop()
  470. connected_nodes = node.hierarchy_dependencies.copy()
  471. for new_node in connected_nodes:
  472. if new_node in nodes: raise GraphError()
  473. nodes.append(new_node)
  474. return nodes
  475. ##################################################################################################
  476. # misc
  477. ##################################################################################################
  478. # this function is used a lot, so it is a good target for optimization.
  479. def to_mathutils_value(socket):
  480. if hasattr(socket, "default_value"):
  481. from mathutils import Matrix, Euler, Quaternion, Vector
  482. val = socket.default_value
  483. # if socket.bl_idname in [
  484. # 'NodeSocketVector',
  485. # 'NodeSocketVectorAcceleration',
  486. # 'NodeSocketVectorDirection',
  487. # 'NodeSocketVectorTranslation',
  488. # 'NodeSocketVectorXYZ',
  489. # 'NodeSocketVectorVelocity',
  490. # 'VectorSocket',
  491. # 'VectorEulerSocket',
  492. # 'VectorTranslationSocket',
  493. # 'VectorScaleSocket',
  494. # 'ParameterVectorSocket',]:
  495. # # if "Vector" in socket.bl_idname:
  496. # return (Vector(( val[0], val[1], val[2], )))
  497. # if socket.bl_idname in ['NodeSocketVectorEuler']:
  498. # return (Euler(( val[0], val[1], val[2])), 'XYZ',) #TODO make choice
  499. if socket.bl_idname in ['MatrixSocket']:
  500. return socket.TellValue()
  501. # elif socket.bl_idname in ['QuaternionSocket']:
  502. # return (Quaternion( (val[0], val[1], val[2], val[3],)) )
  503. # elif socket.bl_idname in ['QuaternionSocketAA']:
  504. # return (Quaternion( (val[1], val[2], val[3],), val[0], ) )
  505. # elif socket.bl_idname in ['BooleanThreeTupleSocket']:
  506. # return (val[0], val[1], val[2])
  507. else:
  508. return val
  509. else:
  510. return None
  511. def all_trees_in_tree(base_tree, selected=False):
  512. """ Recursively finds all trees referenced in a given base-tree."""
  513. # note that this is recursive but not by tail-end recursion
  514. # a while-loop is a better way to do recursion in Python.
  515. trees = [base_tree]
  516. can_descend = True
  517. check_trees = [base_tree]
  518. while (len(check_trees) > 0): # this seems innefficient, why 2 loops?
  519. new_trees = []
  520. while (len(check_trees) > 0):
  521. tree = check_trees.pop()
  522. for node in tree.nodes:
  523. if selected == True and node.select == False:
  524. continue
  525. if new_tree := getattr(node, "node_tree", None):
  526. if new_tree in trees: continue
  527. new_trees.append(new_tree)
  528. trees.append(new_tree)
  529. check_trees = new_trees
  530. return trees
  531. # this is a destructive operation, not a pure function or whatever. That isn't good but I don't care.
  532. def SugiyamaGraph(tree, iterations):
  533. from grandalf.graphs import Vertex, Edge, Graph, graph_core
  534. class defaultview(object):
  535. w,h = 1,1
  536. xz = (0,0)
  537. no_links = set()
  538. verts = {}
  539. for n in tree.nodes:
  540. has_links=False
  541. for inp in n.inputs:
  542. if inp.is_linked:
  543. has_links=True
  544. break
  545. else:
  546. no_links.add(n.name)
  547. for out in n.outputs:
  548. if out.is_linked:
  549. has_links=True
  550. break
  551. else:
  552. try:
  553. no_links.remove(n.name)
  554. except KeyError:
  555. pass
  556. if not has_links:
  557. continue
  558. v = Vertex(n.name)
  559. v.view = defaultview()
  560. v.view.xy = n.location
  561. v.view.h = n.height*2.5
  562. v.view.w = n.width*2.2
  563. verts[n.name] = v
  564. edges = []
  565. for link in tree.links:
  566. weight = 1 # maybe this is useful
  567. edges.append(Edge(verts[link.from_node.name], verts[link.to_node.name], weight) )
  568. graph = Graph(verts.values(), edges)
  569. from grandalf.layouts import SugiyamaLayout
  570. sug = SugiyamaLayout(graph.C[0]) # no idea what .C[0] is
  571. roots=[]
  572. for node in tree.nodes:
  573. has_links=False
  574. for inp in node.inputs:
  575. if inp.is_linked:
  576. has_links=True
  577. break
  578. for out in node.outputs:
  579. if out.is_linked:
  580. has_links=True
  581. break
  582. if not has_links:
  583. continue
  584. if len(node.inputs)==0:
  585. roots.append(verts[node.name])
  586. else:
  587. for inp in node.inputs:
  588. if inp.is_linked==True:
  589. break
  590. else:
  591. roots.append(verts[node.name])
  592. sug.init_all(roots=roots,)
  593. sug.draw(iterations)
  594. for v in graph.C[0].sV:
  595. for n in tree.nodes:
  596. if n.name == v.data:
  597. n.location.x = v.view.xy[1]
  598. n.location.y = v.view.xy[0]
  599. # now we can take all the input nodes and try to put them in a sensible place
  600. for n_name in no_links:
  601. n = tree.nodes.get(n_name)
  602. next_n = None
  603. next_node = None
  604. for output in n.outputs:
  605. if output.is_linked == True:
  606. next_node = output.links[0].to_node
  607. break
  608. # let's see if the next node
  609. if next_node:
  610. # need to find the other node in the same layer...
  611. other_node = None
  612. for s_input in next_node.inputs:
  613. if s_input.is_linked:
  614. other_node = s_input.links[0].from_node
  615. if other_node is n:
  616. continue
  617. else:
  618. break
  619. if other_node:
  620. n.location = other_node.location
  621. n.location.y -= other_node.height*2
  622. else: # we'll just position it next to the next node
  623. n.location = next_node.location
  624. n.location.x -= next_node.width*1.5
  625. ##################################################################################################
  626. # stuff I should probably refactor!!
  627. ##################################################################################################
  628. # what in the cuss is this horrible abomination??
  629. def class_for_mantis_prototype_node(prototype_node):
  630. """ This is a class which returns a class to instantiate for
  631. the given prototype node."""
  632. #from .node_container_classes import TellClasses
  633. from . import xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers
  634. classes = {}
  635. for module in [xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers]:
  636. for cls in module.TellClasses():
  637. classes[cls.__name__] = cls
  638. # I could probably do a string.replace() here
  639. # But I actually think this is a bad idea since I might not
  640. # want to use this name convention in the future
  641. # this is easy enough for now, may refactor.
  642. #
  643. # kek, turns out it was completely friggin' inconsistent already
  644. if prototype_node.bl_idname == 'xFormRootNode':
  645. return classes["xFormRoot"]
  646. elif prototype_node.bl_idname == 'xFormArmatureNode':
  647. return classes["xFormArmature"]
  648. elif prototype_node.bl_idname == 'xFormBoneNode':
  649. return classes["xFormBone"]
  650. elif prototype_node.bl_idname == 'xFormGeometryObject':
  651. return classes["xFormGeometryObject"]
  652. elif prototype_node.bl_idname == 'linkInherit':
  653. return classes["LinkInherit"]
  654. elif prototype_node.bl_idname == 'InputFloatNode':
  655. return classes["InputFloat"]
  656. elif prototype_node.bl_idname == 'InputVectorNode':
  657. return classes["InputVector"]
  658. elif prototype_node.bl_idname == 'InputBooleanNode':
  659. return classes["InputBoolean"]
  660. elif prototype_node.bl_idname == 'InputBooleanThreeTupleNode':
  661. return classes["InputBooleanThreeTuple"]
  662. elif prototype_node.bl_idname == 'InputRotationOrderNode':
  663. return classes["InputRotationOrder"]
  664. elif prototype_node.bl_idname == 'InputTransformSpaceNode':
  665. return classes["InputTransformSpace"]
  666. elif prototype_node.bl_idname == 'InputStringNode':
  667. return classes["InputString"]
  668. elif prototype_node.bl_idname == 'InputQuaternionNode':
  669. return classes["InputQuaternion"]
  670. elif prototype_node.bl_idname == 'InputQuaternionNodeAA':
  671. return classes["InputQuaternionAA"]
  672. elif prototype_node.bl_idname == 'InputMatrixNode':
  673. return classes["InputMatrix"]
  674. elif prototype_node.bl_idname == 'MetaRigMatrixNode':
  675. return classes["InputMatrix"]
  676. elif prototype_node.bl_idname == 'InputLayerMaskNode':
  677. return classes["InputLayerMask"]
  678. elif prototype_node.bl_idname == 'GeometryCirclePrimitive':
  679. return classes["CirclePrimitive"]
  680. # every node before this point is not guarenteed to follow the pattern
  681. # but every node not checked above does follow the pattern.
  682. try:
  683. return classes[ prototype_node.bl_idname ]
  684. except KeyError:
  685. # prGreen(prototype_node.bl_idname)
  686. # prWhite(classes.keys())
  687. pass
  688. if prototype_node.bl_idname in [
  689. "NodeReroute",
  690. "NodeGroupInput",
  691. "NodeGroupOutput",
  692. "MantisNodeGroup",
  693. "NodeFrame",
  694. "MantisSchemaGroup",
  695. ]:
  696. return None
  697. prRed(prototype_node.bl_idname)
  698. raise RuntimeError(wrapOrange("Failed to create node container for: ")+wrapRed("%s" % prototype_node.bl_idname))
  699. return None
  700. # This is really, really stupid HACK
  701. def gen_nc_input_for_data(socket):
  702. # Class List #TODO deduplicate
  703. from . import xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers
  704. classes = {}
  705. for module in [xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers]:
  706. for cls in module.TellClasses():
  707. classes[cls.__name__] = cls
  708. #
  709. socket_class_map = {
  710. "MatrixSocket" : classes["InputMatrix"],
  711. "xFormSocket" : None,
  712. "RelationshipSocket" : classes["xFormRoot"], # world in
  713. "DeformerSocket" : classes["xFormRoot"], # world in
  714. "GeometrySocket" : classes["InputExistingGeometryData"],
  715. "EnableSocket" : classes["InputBoolean"],
  716. "HideSocket" : classes["InputBoolean"],
  717. #
  718. "DriverSocket" : None,
  719. "DriverVariableSocket" : None,
  720. "FCurveSocket" : None,
  721. "KeyframeSocket" : None,
  722. # "LayerMaskInputSocket" : classes["InputLayerMask"],
  723. # "LayerMaskSocket" : classes["InputLayerMask"],
  724. "BoneCollectionSocket" : classes["InputString"],
  725. "BoneCollectionInputSocket" : classes["InputString"],
  726. #
  727. "xFormParameterSocket" : None,
  728. "ParameterBoolSocket" : classes["InputBoolean"],
  729. "ParameterIntSocket" : classes["InputFloat"], #TODO: make an Int node for this
  730. "ParameterFloatSocket" : classes["InputFloat"],
  731. "ParameterVectorSocket" : classes["InputVector"],
  732. "ParameterStringSocket" : classes["InputString"],
  733. #
  734. "TransformSpaceSocket" : classes["InputTransformSpace"],
  735. "BooleanSocket" : classes["InputBoolean"],
  736. "BooleanThreeTupleSocket" : classes["InputBooleanThreeTuple"],
  737. "RotationOrderSocket" : classes["InputRotationOrder"],
  738. "QuaternionSocket" : classes["InputQuaternion"],
  739. "QuaternionSocketAA" : classes["InputQuaternionAA"],
  740. "IntSocket" : classes["InputFloat"],
  741. "StringSocket" : classes["InputString"],
  742. #
  743. "BoolUpdateParentNode" : classes["InputBoolean"],
  744. "IKChainLengthSocket" : classes["InputFloat"],
  745. "EnumInheritScale" : classes["InputString"],
  746. "EnumRotationMix" : classes["InputString"],
  747. "EnumRotationMixCopyTransforms" : classes["InputString"],
  748. "EnumMaintainVolumeStretchTo" : classes["InputString"],
  749. "EnumRotationStretchTo" : classes["InputString"],
  750. "EnumTrackAxis" : classes["InputString"],
  751. "EnumUpAxis" : classes["InputString"],
  752. "EnumLockAxis" : classes["InputString"],
  753. "EnumLimitMode" : classes["InputString"],
  754. "EnumYScaleMode" : classes["InputString"],
  755. "EnumXZScaleMode" : classes["InputString"],
  756. "EnumCurveSocket" : classes["InputString"],
  757. # Deformers
  758. "EnumSkinning" : classes["InputString"],
  759. #
  760. "FloatSocket" : classes["InputFloat"],
  761. "FloatFactorSocket" : classes["InputFloat"],
  762. "FloatPositiveSocket" : classes["InputFloat"],
  763. "FloatAngleSocket" : classes["InputFloat"],
  764. "VectorSocket" : classes["InputVector"],
  765. "VectorEulerSocket" : classes["InputVector"],
  766. "VectorTranslationSocket" : classes["InputVector"],
  767. "VectorScaleSocket" : classes["InputVector"],
  768. # Drivers
  769. "EnumDriverVariableType" : classes["InputString"],
  770. "EnumDriverVariableEvaluationSpace" : classes["InputString"],
  771. "EnumDriverRotationMode" : classes["InputString"],
  772. "EnumDriverType" : classes["InputString"],
  773. "EnumKeyframeInterpTypeSocket" : classes["InputString"],
  774. "EnumKeyframeBezierHandleTypeSocket" : classes["InputString"],
  775. # Math
  776. "MathFloatOperation" : classes["InputString"],
  777. "MathVectorOperation" : classes["InputString"],
  778. "MatrixTransformOperation" : classes["InputString"],
  779. # Schema
  780. "WildcardSocket" : None,
  781. }
  782. return socket_class_map.get(socket.bl_idname, None)
  783. ####################################
  784. # CURVE STUFF
  785. ####################################
  786. def rotate(l, n):
  787. if ( not ( isinstance(n, int) ) ): #print an error if n is not an int:
  788. raise TypeError("List slice must be an int, not float.")
  789. return l[n:] + l[:n]
  790. #from stack exchange, thanks YXD
  791. # this stuff could be branchless but I don't use it much TODO
  792. def cap(val, maxValue):
  793. if (val > maxValue):
  794. return maxValue
  795. return val
  796. def capMin(val, minValue):
  797. if (val < minValue):
  798. return minValue
  799. return val
  800. # def wrap(val, min=0, max=1):
  801. # raise NotImplementedError
  802. #wtf this doesn't do anything even remotely similar to wrap, or useful in
  803. # HACK BAD FIXME UNBREAK ME BAD
  804. # I don't understand what this function does but I am using it in multiple places?
  805. def wrap(val, maxValue, minValue = None):
  806. if (val > maxValue):
  807. return (-1 * ((maxValue - val) + 1))
  808. if ((minValue) and (val < minValue)):
  809. return (val + maxValue)
  810. return val
  811. #TODO clean this up
  812. def layerMaskCompare(mask_a, mask_b):
  813. compare = 0
  814. for a, b in zip(mask_a, mask_b):
  815. if (a != b):
  816. compare+=1
  817. if (compare == 0):
  818. return True
  819. return False
  820. def lerpVal(a, b, fac = 0.5):
  821. return a + ( (b-a) * fac)
  822. def RibbonMeshEdgeLengths(m, ribbon):
  823. tE = ribbon[0]; bE = ribbon[1]; c = ribbon[2]
  824. lengths = []
  825. for i in range( len( tE ) ): #tE and bE are same length
  826. if (c == True):
  827. v1NextInd = tE[wrap((i+1), len(tE) - 1)]
  828. else:
  829. v1NextInd = tE[cap((i+1) , len(tE) - 1 )]
  830. v1 = m.vertices[tE[i]]; v1Next = m.vertices[v1NextInd]
  831. if (c == True):
  832. v2NextInd = bE[wrap((i+1), len(bE) - 1)]
  833. else:
  834. v2NextInd = bE[cap((i+1) , len(bE) - 1 )]
  835. v2 = m.vertices[bE[i]]; v2Next = m.vertices[v2NextInd]
  836. v = v1.co.lerp(v2.co, 0.5); vNext = v1Next.co.lerp(v2Next.co, 0.5)
  837. # get the center, edges may not be straight so total length
  838. # of one edge may be more than the ribbon center's length
  839. lengths.append(( v - vNext ).length)
  840. return lengths
  841. def EnsureCurveIsRibbon(crv, defaultRadius = 0.1):
  842. crvRadius = 0
  843. if (crv.data.bevel_depth == 0):
  844. crvRadius = crv.data.extrude
  845. else: #Set ribbon from bevel depth
  846. crvRadius = crv.data.bevel_depth
  847. crv.data.bevel_depth = 0
  848. crv.data.extrude = crvRadius
  849. if (crvRadius == 0):
  850. crv.data.extrude = defaultRadius
  851. def SetRibbonData(m, ribbon):
  852. #maybe this could be incorporated into the DetectWireEdges function?
  853. #maybe I can check for closed poly curves here? under what other circumstance
  854. # will I find the ends of the wire have identical coordinates?
  855. ribbonData = []
  856. tE = ribbon[0].copy(); bE = ribbon[1].copy()# circle = ribbon[2]
  857. #
  858. lengths = RibbonMeshEdgeLengths(m, ribbon)
  859. lengths.append(0)
  860. totalLength = sum(lengths)
  861. # m.calc_normals() #calculate normals
  862. # it appears this has been removed.
  863. for i, (t, b) in enumerate(zip(tE, bE)):
  864. ind = wrap( (i + 1), len(tE) - 1 )
  865. tNext = tE[ind]; bNext = bE[ind]
  866. ribbonData.append( ( (t,b), (tNext, bNext), lengths[i] ) )
  867. #if this is a circle, the last v in vertData has a length, otherwise 0
  868. return ribbonData, totalLength
  869. def mesh_from_curve(crv, context,):
  870. """Utility function for converting a mesh to a curve
  871. which will return the correct mesh even with modifiers"""
  872. import bpy
  873. if (len(crv.modifiers) > 0):
  874. do_unlink = False
  875. if (not context.scene.collection.all_objects.get(crv.name)):
  876. context.collection.objects.link(crv) # i guess this forces the dg to update it?
  877. do_unlink = True
  878. dg = context.view_layer.depsgraph
  879. # just gonna modify it for now lol
  880. EnsureCurveIsRibbon(crv)
  881. # try:
  882. dg.update()
  883. mOb = crv.evaluated_get(dg)
  884. m = bpy.data.meshes.new_from_object(mOb)
  885. m.name=crv.data.name+'_mesh'
  886. if (do_unlink):
  887. context.collection.objects.unlink(crv)
  888. return m
  889. # except: #dg is None?? # FIX THIS BUG BUG BUG
  890. # print ("Warning: could not apply modifiers on curve")
  891. # return bpy.data.meshes.new_from_object(crv)
  892. else: # (ಥ﹏ಥ) why can't I just use this !
  893. # for now I will just do it like this
  894. EnsureCurveIsRibbon(crv)
  895. return bpy.data.meshes.new_from_object(crv)
  896. # def DataFromRibbon(obCrv, factorsList, context, fReport=None,):
  897. # # BUG
  898. # # no reasonable results if input is not a ribbon
  899. # import time
  900. # start = time.time()
  901. # """Returns a point from a u-value along a curve"""
  902. # rM = MeshFromCurve(obCrv, context)
  903. # ribbons = f_mesh.DetectRibbons(rM, fReport= fReport)
  904. # for ribbon in ribbons:
  905. # # could be improved, this will do a rotation for every ribbon
  906. # # if even one is a circle
  907. # if (ribbon[2]) == True:
  908. # # could be a better implementation
  909. # dupeCrv = obCrv.copy()
  910. # dupeCrv.data = obCrv.data.copy()
  911. # dupeCrv.data.extrude = 0
  912. # dupeCrv.data.bevel_depth = 0
  913. # wM = MeshFromCurve(dupeCrv, context)
  914. # wires = f_mesh.DetectWireEdges(wM)
  915. # bpy.data.curves.remove(dupeCrv.data) #removes the object, too
  916. # ribbonsNew = []
  917. # for ribbon, wire in zip(ribbons, wires):
  918. # if (ribbon[2] == True): #if it's a circle
  919. # rNew = f_mesh.RotateRibbonToMatchWire(ribbon, rM, wire, wM)
  920. # else:
  921. # rNew = ribbon
  922. # ribbonsNew.append( rNew )
  923. # ribbons = ribbonsNew
  924. # break
  925. # data = f_mesh.DataFromRibbon(rM, factorsList, obCrv.matrix_world, ribbons=ribbons, fReport=fReport)
  926. # bpy.data.meshes.remove(rM)
  927. # print ("time elapsed: ", time.time() - start)
  928. # #expects data...
  929. # # if ()
  930. # return data
  931. def DetectRibbon(f, bm, skipMe):
  932. fFirst = f.index
  933. cont = True
  934. circle = False
  935. tEdge, bEdge = [],[]
  936. while (cont == True):
  937. skipMe.add(f.index)
  938. tEdge.append (f.loops[0].vert.index) # top-left
  939. bEdge.append (f.loops[3].vert.index) # bottom-left
  940. nEdge = bm.edges.get([f.loops[1].vert, f.loops[2].vert])
  941. nFaces = nEdge.link_faces
  942. if (len(nFaces) == 1):
  943. cont = False
  944. else:
  945. for nFace in nFaces:
  946. if (nFace != f):
  947. f = nFace
  948. break
  949. if (f.index == fFirst):
  950. cont = False
  951. circle = True
  952. if (cont == False): # we've reached the end, get the last two:
  953. tEdge.append (f.loops[1].vert.index) # top-right
  954. bEdge.append (f.loops[2].vert.index) # bottom-right
  955. # this will create a loop for rings --
  956. # "the first shall be the last and the last shall be first"
  957. return (tEdge,bEdge,circle)
  958. def DetectRibbons(m, fReport = None):
  959. # Returns list of vertex indices belonging to ribbon mesh edges
  960. # NOTE: this assumes a mesh object with only ribbon meshes
  961. # ---DO NOT call this script with a mesh that isn't a ribbon!--- #
  962. import bmesh
  963. bm = bmesh.new()
  964. bm.from_mesh(m)
  965. mIslands, mIsland = [], []
  966. skipMe = set()
  967. bm.faces.ensure_lookup_table()
  968. #first, get a list of mesh islands
  969. for f in bm.faces:
  970. if (f.index in skipMe):
  971. continue #already done here
  972. checkMe = [f]
  973. while (len(checkMe) > 0):
  974. facesFound = 0
  975. for f in checkMe:
  976. if (f.index in skipMe):
  977. continue #already done here
  978. mIsland.append(f)
  979. skipMe.add(f.index)
  980. for e in f.edges:
  981. checkMe += e.link_faces
  982. if (facesFound == 0):
  983. #this is the last iteration
  984. mIslands.append(mIsland)
  985. checkMe, mIsland = [], []
  986. ribbons = []
  987. skipMe = set() # to store ends already checked
  988. for mIsl in mIslands:
  989. ribbon = None
  990. first = float('inf')
  991. for f in mIsl:
  992. if (f.index in skipMe):
  993. continue #already done here
  994. if (f.index < first):
  995. first = f.index
  996. adjF = 0
  997. for e in f.edges:
  998. adjF+= (len(e.link_faces) - 1)
  999. # every face other than this one is added to the list
  1000. if (adjF == 1):
  1001. ribbon = (DetectRibbon(f, bm, skipMe) )
  1002. break
  1003. if (ribbon == None):
  1004. ribbon = (DetectRibbon(bm.faces[first], bm, skipMe) )
  1005. ribbons.append(ribbon)
  1006. # print (ribbons)
  1007. return ribbons
  1008. def data_from_ribbon_mesh(m, factorsList, mat, ribbons = None, fReport = None):
  1009. #Note, factors list should be equal in length the the number of wires
  1010. #Now working for multiple wires, ugly tho
  1011. if (ribbons == None):
  1012. ribbons = DetectRibbons(m, fReport=fReport)
  1013. if (ribbons is None):
  1014. if (fReport):
  1015. fReport(type = {'ERROR'}, message="No ribbon to get data from.")
  1016. else:
  1017. print ("No ribbon to get data from.")
  1018. return None
  1019. ret = []
  1020. for factors, ribbon in zip(factorsList, ribbons):
  1021. points = []
  1022. widths = []
  1023. normals = []
  1024. ribbonData, totalLength = SetRibbonData(m, ribbon)
  1025. for fac in factors:
  1026. if (fac == 0):
  1027. data = ribbonData[0]
  1028. curFac = 0
  1029. elif (fac == 1):
  1030. data = ribbonData[-1]
  1031. curFac = 0
  1032. else:
  1033. targetLength = totalLength * fac
  1034. data = ribbonData[0]
  1035. curLength = 0
  1036. for ( (t, b), (tNext, bNext), length,) in ribbonData:
  1037. if (curLength >= targetLength):
  1038. break
  1039. curLength += length
  1040. data = ( (t, b), (tNext, bNext), length,)
  1041. targetLengthAtEdge = (curLength - targetLength)
  1042. if (targetLength == 0):
  1043. curFac = 0
  1044. elif (targetLength == totalLength):
  1045. curFac = 1
  1046. else:
  1047. try:
  1048. curFac = 1 - (targetLengthAtEdge/ data[2]) #length
  1049. except ZeroDivisionError:
  1050. curFac = 0
  1051. if (fReport):
  1052. fReport(type = {'WARNING'}, message="Division by Zero.")
  1053. else:
  1054. prRed ("Division by Zero Error in evaluating data from curve.")
  1055. t1 = m.vertices[data[0][0]]; b1 = m.vertices[data[0][1]]
  1056. t2 = m.vertices[data[1][0]]; b2 = m.vertices[data[1][1]]
  1057. #location
  1058. loc1 = (t1.co).lerp(b1.co, 0.5)
  1059. loc2 = (t2.co).lerp(b2.co, 0.5)
  1060. #width
  1061. w1 = (t1.co - b1.co).length/2
  1062. w2 = (t2.co - b2.co).length/2 #radius, not diameter
  1063. #normal
  1064. n1 = (t1.normal).slerp(b1.normal, 0.5)
  1065. n2 = (t1.normal).slerp(b2.normal, 0.5)
  1066. if ((data[0][0] > data[1][0]) and (ribbon[2] == False)):
  1067. curFac = 0
  1068. #don't interpolate if at the end of a ribbon that isn't circular
  1069. if ( 0 < curFac < 1):
  1070. outPoint = loc1.lerp(loc2, curFac)
  1071. outNorm = n1.lerp(n2, curFac)
  1072. outWidth = w1 + ( (w2-w1) * curFac)
  1073. elif (curFac <= 0):
  1074. outPoint = loc1.copy()
  1075. outNorm = n1
  1076. outWidth = w1
  1077. elif (curFac >= 1):
  1078. outPoint = loc2.copy()
  1079. outNorm = n2
  1080. outWidth = w2
  1081. outPoint = mat @ outPoint
  1082. outNorm.normalize()
  1083. points.append ( outPoint.copy() ) #copy because this is an actual vertex location
  1084. widths.append ( outWidth )
  1085. normals.append( outNorm )
  1086. ret.append( (points, widths, normals) )
  1087. return ret # this is a list of tuples containing three lists