| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 | """ Optional file providing a tool to visualize Mantis Graphs, for debugging and development"""from bpy.types import Node, NodeTree, Operatorfrom .utilities import (prRed, prGreen, prPurple, prWhite,                              prOrange,                              wrapRed, wrapGreen, wrapPurple, wrapWhite,                              wrapOrange,)class MantisVisualizeTree(NodeTree):    '''A custom node tree type that will show up in the editor type list'''    bl_idname = 'MantisVisualizeTree'    bl_label = "mantis output"    bl_icon = 'HIDE_OFF'class MantisVisualizeNode(Node):    bl_idname = "MantisVisualizeNode"    bl_label = "Node"    @classmethod    def poll(cls, ntree):        return (ntree.bl_idname in ['MantisVisualizeTree'])        def init(self, context):        pass        def gen_data(self, mantis_node, mode='DEBUG_CONNECTIONS'):        from .utilities import get_node_prototype        np=get_node_prototype(mantis_node.ui_signature, mantis_node.base_tree)        self.use_custom_color = True        match mantis_node.node_type:            case 'XFORM':        self.color = (1.0 ,0.5, 0.0)            case 'LINK':         self.color = (0.4 ,0.2, 1.0)            case 'UTILITY':      self.color = (0.2 ,0.2, 0.2)            case 'DUMMY_SCHEMA': self.color = (0.85 ,0.95, 0.9)            case 'DUMMY':        self.color = (0.05 ,0.05, 0.15)        self.name = '.'.join(mantis_node.signature[1:])        if np:            if np.label:                self.label=np.label            else:                self.label=np.name            for inp in mantis_node.inputs:                match mode:                    case "DEBUG_CONNECTIONS":                        if not inp.is_connected:                            continue                s = self.inputs.new('WildcardSocket', inp.name)                try:                    if sock := np.inputs.get(inp.name):                        s.color = inp.color_simple                except AttributeError: #default bl_idname types like Float and Vector, no biggie                    pass                except KeyError:                    pass            for out in mantis_node.outputs:                match mode:                    case "DEBUG_CONNECTIONS":                        if not out.is_connected:                            continue                s = self.outputs.new('WildcardSocket', out.name)                try:                    if sock := np.outputs.get(out.name):                        s.color = out.color_simple                except AttributeError: #default bl_idname types like Float and Vector, no biggie                    pass                except KeyError:                    pass            self.location = np.location # will get overwritten by Grandalf later.        else:            self.label = mantis_node.signature[-1] # which is be the unique name.            for inp in mantis_node.inputs.keys():                match mode:                    case "DEBUG_CONNECTIONS":                        if not inp.is_connected:                            continue                self.inputs.new('WildcardSocket', inp.name)            for out in mantis_node.outputs.keys():                match mode:                    case "DEBUG_CONNECTIONS":                        if not out.is_connected:                            continue                self.outputs.new('WildcardSocket', out.name)def gen_vis_node(mantis_node, vis_tree, links):    from .utilities import get_node_prototype    base_tree= mantis_node.base_tree    vis = vis_tree.nodes.new('MantisVisualizeNode')    vis.gen_data(mantis_node)    for inp in mantis_node.inputs.values():        for l in inp.links:            links.add(l)    for out in mantis_node.outputs.values():        for l in out.links:            links.add(l)    return vis                def visualize_tree(nodes, base_tree, context):    # first create a MantisVisualizeTree    from .readtree import check_and_add_root    from .utilities import trace_all_nodes_from_root    import bpy    trace_all_nodes=True    if trace_all_nodes:        roots=[]        for n in nodes.values():            check_and_add_root(n, roots)        mantis_nodes=set()        for r in roots:            nodes_from_root = ( trace_all_nodes_from_root(r, mantis_nodes))        if len(mantis_nodes) ==  0:            print ("No nodes to visualize")            return        all_links = set()        nodes={}        vis_tree = bpy.data.node_groups.new(base_tree.name+'_visualized', type='MantisVisualizeTree')    else:        mantis_nodes = list(base_tree.parsed_tree.values())    for m in mantis_nodes:        nodes[m.signature]=gen_vis_node(m, vis_tree,all_links)    for l in all_links:        if l.to_node.node_type in ['DUMMY_SCHEMA', 'DUMMY'] or \           l.from_node.node_type in ['DUMMY_SCHEMA', 'DUMMY']:            pass        # print (l.from_node.node_type, l.to_node.node_type)        # n_name_in = '.'.join(l.from_node.signature[1:])        # s_name_in = l.from_socket        # n_name_out = '.'.join(l.to_node.signature[1:])        # s_name_out = l.to_socket        # print (n_name_in, s_name_in, " --> ", n_name_out, s_name_out)        from_node=nodes[l.from_node.signature]        to_node=nodes[l.to_node.signature]        from_socket = from_node.outputs[l.from_socket]        to_socket = to_node.inputs[l.to_socket]        try:            vis_tree.links.new(                input=from_socket,                output=to_socket,                )        except Exception as e:            print (type(e))            prRed(f"Could not make link {n_name_in}:{s_name_in}-->{n_name_out}:{s_name_out}")            print(e)            raise e    # at this point not all links are in the tree yet!    def has_links (n):        for input in n.inputs:            if input.is_linked:                return True        for output in n.outputs:            if output.is_linked:                return True        return False        no_links=[]    for n in vis_tree.nodes:        if not has_links(n):            no_links.append(n)        def side_len(n):        from math import floor        side = floor(n**(1/2)) + 1        return side    side=side_len(len(no_links))    break_me = True    for i in range(side):        for j in range(side):            index = side*i+j            try:                n = no_links[index]                n.location.x = i*200                n.location.y = j*200            except IndexError:                break_me = True # it's too big, that's OK the square is definitely bigger                break        if break_me:            break    from .utilities import SugiyamaGraph    SugiyamaGraph(vis_tree, 16)from .ops_nodegroup import mantis_tree_poll_opclass MantisVisualizeOutput(Operator):    """Mantis Visualize Output Operator"""    bl_idname = "mantis.visualize_output"    bl_label = "Visualize Output"    @classmethod    def poll(cls, context):        return (mantis_tree_poll_op(context))    def execute(self, context):        from time import time        from .utilities import wrapGreen, prGreen                tree=context.space_data.path[0].node_tree        tree.update_tree(context)        # tree.execute_tree(context)        prGreen(f"Visualize Tree: {tree.name}")        nodes = tree.parsed_tree        visualize_tree(nodes, tree, context)        return {"FINISHED"}
 |