| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866 | from .node_container_common import *from bpy.types import Bone, NodeTreefrom .base_definitions import MantisNode, GraphError, FLOAT_EPSILONfrom .link_socket_templates import *def TellClasses():    return [             # special             LinkInherit,             # copy             LinkCopyLocation,             LinkCopyRotation,             LinkCopyScale,             LinkCopyTransforms,             LinkTransformation,             # limit             LinkLimitLocation,             LinkLimitRotation,             LinkLimitScale,             LinkLimitDistance,             # tracking             LinkStretchTo,             LinkDampedTrack,             LinkLockedTrack,             LinkTrackTo,             #misc             LinkInheritConstraint,             LinkArmature,             # IK             LinkInverseKinematics,             LinkSplineIK,             LinkFloor,             # Drivers             LinkDrivenParameter,            ]# set the name if it is available, otherwise just use the constraint's nice nameset_constraint_name = lambda nc : nc.evaluate_input("Name") if nc.evaluate_input("Name") else nc.__class__.__name__class MantisLinkNode(MantisNode):    def __init__(self, signature : tuple,                 base_tree : NodeTree,                 socket_templates : list[SockTemplate]=[]):        super().__init__(signature, base_tree, socket_templates)        self.node_type = 'LINK'        self.prepared = True; self.bObject=[]    def evaluate_input(self, input_name, index=0):        # should catch 'Target', 'Pole Target' and ArmatureConstraint targets, too        if ('Target' in input_name) and input_name not in  ["Target Space", "Use Target Z"]:            socket = self.inputs.get(input_name)            if socket.is_linked:                return socket.links[0].from_node            return None                    else:            return super().evaluate_input(input_name)        def gen_property_socket_map(self) -> dict:        props_sockets = super().gen_property_socket_map()        if (os := self.inputs.get("Owner Space")) and os.is_connected and os.links[0].from_node.node_type == 'XFORM':            del props_sockets['owner_space']        if ts := self.inputs.get("Target_Space") and ts.is_connected and ts.links[0].from_node.node_type == 'XFORM':            del props_sockets['target_space']        return props_sockets        def set_custom_space(self):        for c in self.bObject:            if (os := self.inputs.get("Owner Space")) and os.is_connected and os.links[0].from_node.node_type == 'XFORM':                c.owner_space='CUSTOM'                xf = self.inputs["Owner Space"].links[0].from_node.bGetObject(mode="OBJECT")                if isinstance(xf, Bone):                    c.space_object=self.inputs["Owner Space"].links[0].from_node.bGetParentArmature(); c.space_subtarget=xf.name                else:                    c.space_object=xf            if ts := self.inputs.get("Target_Space") and ts.is_connected and ts.links[0].from_node.node_type == 'XFORM':                c.owner_space='CUSTOM'                xf = self.inputs["Target_Space Space"].links[0].from_node.bGetObject(mode="OBJECT")                if isinstance(xf, Bone):                    c.space_object=self.inputs["Target_Space Space"].links[0].from_node.bGetParentArmature(); c.space_subtarget=xf.name                else:                    c.space_object=xf            def GetxForm(nc, output_name="Output Relationship"):        break_condition= lambda node : node.node_type=='XFORM'        xforms = trace_line_up_branching(nc, output_name, break_condition)        return_me=[]        for xf in xforms:            if xf.node_type != 'XFORM':                continue            if xf in return_me:                continue            return_me.append(xf)        return return_me        def reset_execution(self):        super().reset_execution()        self.prepared = True; self.bObject = []        def bFinalize(self, bContext=None):        finish_drivers(self)#*#-------------------------------#++#-------------------------------#*## L I N K   N O D E S#*#-------------------------------#++#-------------------------------#*#class LinkInherit(MantisLinkNode):    '''A node representing inheritance'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkInheritSockets)        self.init_parameters()        self.set_traverse([('Parent', 'Inheritance')])        self.executed = True        def GetxForm(self):        # I think this is only run in display update.        trace = trace_single_line_up(self, "Inheritance")        for node in trace[0]:            if (node.node_type == 'XFORM'):                return node        raise GraphError("%s is not connected to a downstream xForm" % self)class LinkCopyLocation(MantisLinkNode):    '''A node representing Copy Location'''        def __init__(self, signature : tuple,                 base_tree : NodeTree,):        super().__init__(signature, base_tree, LinkCopyLocationSockets)        additional_parameters = { "Name":None }        self.init_parameters(additional_parameters=additional_parameters)        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            c = xf.bGetObject().constraints.new('COPY_LOCATION')            self.get_target_and_subtarget(c)            print(wrapGreen("Creating ")+wrapWhite("Copy Location")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            self.set_custom_space()            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = True        class LinkCopyRotation(MantisLinkNode):    '''A node representing Copy Rotation'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkCopyRotationSockets)        additional_parameters = { "Name":None }        self.init_parameters(additional_parameters=additional_parameters)        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            c = xf.bGetObject().constraints.new('COPY_ROTATION')            self.get_target_and_subtarget(c)            print(wrapGreen("Creating ")+wrapWhite("Copy Rotation")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))                        rotation_order = self.evaluate_input("RotationOrder")            if ((rotation_order == 'QUATERNION') or (rotation_order == 'AXIS_ANGLE')):                c.euler_order = 'AUTO'            else:                try:                    c.euler_order = rotation_order                except TypeError: # it's a driver or incorrect                    c.euler_order = 'AUTO'            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            self.set_custom_space()            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = True        class LinkCopyScale(MantisLinkNode):    '''A node representing Copy Scale'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkCopyScaleSockets)        additional_parameters = { "Name":None }        self.init_parameters(additional_parameters=additional_parameters)        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            c = xf.bGetObject().constraints.new('COPY_SCALE')            self.get_target_and_subtarget(c)            print(wrapGreen("Creating ")+wrapWhite("Copy Scale")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            if self.inputs["Owner Space"].is_connected and self.inputs["Owner Space"].links[0].from_node.node_type == 'XFORM':                c.owner_space='CUSTOM'                xf = self.inputs["Owner Space"].links[0].from_node.bGetObject(mode="OBJECT")                if isinstance(xf, Bone):                    c.space_object=self.inputs["Owner Space"].links[0].from_node.bGetParentArmature(); c.space_subtarget=xf.name                else:                    c.space_object=xf            if self.inputs["Target Space"].is_connected and self.inputs["Target Space"].links[0].from_node.node_type == 'XFORM':                c.target_space='CUSTOM'                xf = self.inputs["Target Space"].links[0].from_node.bGetObject(mode="OBJECT")                if isinstance(xf, Bone):                    c.space_object=self.inputs["Owner Space"].links[0].from_node.bGetParentArmature(); c.space_subtarget=xf.name                else:                    c.space_object=xf            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)           self.executed = True             class LinkCopyTransforms(MantisLinkNode):    '''A node representing Copy Transfoms'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkCopyTransformsSockets)        additional_parameters = { "Name":None }        self.init_parameters(additional_parameters=additional_parameters)        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            c = xf.bGetObject().constraints.new('COPY_TRANSFORMS')            self.get_target_and_subtarget(c)            print(wrapGreen("Creating ")+wrapWhite("Copy Transforms")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            self.set_custom_space()            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)          self.executed = Trueclass LinkTransformation(MantisLinkNode):    '''A node representing Copy Transfoms'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkTransformationSockets)        self.init_parameters(additional_parameters={"Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])        def ui_modify_socket(self, ui_socket, socket_name=None):        from_suffix, to_suffix = '', ''        if self.evaluate_input("Map From") == 'ROTATION': from_suffix='_rot'        elif self.evaluate_input("Map From") == 'SCALE': from_suffix='_scale'        if self.evaluate_input("Map To") == 'ROTATION': to_suffix='_rot'        elif self.evaluate_input("Map To") == 'SCALE': to_suffix='_scale'        if ('To' in ui_socket.name or 'From' in ui_socket.name) and (from_suffix or to_suffix):            for s_temp in self.socket_templates:                if s_temp.name == ui_socket.name: break            if 'from' in s_temp.blender_property:                socket_name=s_temp.blender_property+from_suffix            else:                socket_name=s_temp.blender_property+to_suffix            return self.update_socket_value(socket_name, ui_socket.default_value)        return super().ui_modify_socket(ui_socket, socket_name)    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            c = xf.bGetObject().constraints.new('TRANSFORM')            self.get_target_and_subtarget(c)            print(wrapGreen("Creating ")+wrapWhite("Transformation")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            self.set_custom_space()            props_sockets = self.gen_property_socket_map()            # we have to fix the blender-property for scale/rotation            # because Blender stores these separately.            # I do not care that this code is ugly.            from_suffix, to_replace = '', ''            if self.evaluate_input("Map From") == 'ROTATION':                from_suffix='_rot'            elif self.evaluate_input("Map From") == 'SCALE':                from_suffix='_scale'            if self.evaluate_input("Map To") == 'ROTATION':                to_replace='_rot'            elif self.evaluate_input("Map To") == 'SCALE':                to_replace='_scale'            if from_suffix:                for axis in ['x', 'y', 'z']:                    stub='from_min_'+axis                    props_sockets[stub+from_suffix]=props_sockets[stub]                    del props_sockets[stub]                    stub='from_max_'+axis                    props_sockets[stub+from_suffix]=props_sockets[stub]                    del props_sockets[stub]            if to_replace:                for axis in ['x', 'y', 'z']:                    stub='to_min_'+axis                    props_sockets[stub+to_replace]=props_sockets[stub]                    del props_sockets[stub]                    stub='to_max_'+axis                    props_sockets[stub+to_replace]=props_sockets[stub]                    del props_sockets[stub]            evaluate_sockets(self, c, props_sockets)          self.executed = Trueclass LinkLimitLocation(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkLimitLocationScaleSockets)        self.init_parameters(additional_parameters={ "Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            c = xf.bGetObject().constraints.new('LIMIT_LOCATION')            print(wrapGreen("Creating ")+wrapWhite("Limit Location")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            self.set_custom_space()            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = True        class LinkLimitRotation(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkLimitRotationSockets)        self.init_parameters(additional_parameters={ "Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            c = xf.bGetObject().constraints.new('LIMIT_ROTATION')            print(wrapGreen("Creating ")+wrapWhite("Limit Rotation")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))                        if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            self.set_custom_space()            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = Trueclass LinkLimitScale(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkLimitLocationScaleSockets)        self.init_parameters(additional_parameters={ "Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            c = xf.bGetObject().constraints.new('LIMIT_SCALE')            print(wrapGreen("Creating ")+wrapWhite("Limit Scale")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))                        if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            self.set_custom_space()            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = True class LinkLimitDistance(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkLimitDistanceSockets)        self.init_parameters(additional_parameters={ "Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapWhite("Limit Distance")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('LIMIT_DISTANCE')            self.get_target_and_subtarget(c)            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            self.set_custom_space()            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = True# Trackingclass LinkStretchTo(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkStretchToSockets)        self.init_parameters(additional_parameters={ "Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapWhite("Stretch-To")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('STRETCH_TO')            self.get_target_and_subtarget(c)            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)                        if (self.evaluate_input("Original Length") == 0):                # this is meant to be set automatically.                c.rest_length = xf.bGetObject().bone.length        self.executed = Trueclass LinkDampedTrack(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkDampedTrackSockets)        self.init_parameters(additional_parameters={ "Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapWhite("Damped Track")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('DAMPED_TRACK')            self.get_target_and_subtarget(c)            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = Trueclass LinkLockedTrack(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree,LinkLockedTrackSockets)        self.init_parameters(additional_parameters={"Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapWhite("Locked Track")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('LOCKED_TRACK')            self.get_target_and_subtarget(c)            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = Trueclass LinkTrackTo(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkTrackToSockets)        self.init_parameters(additional_parameters={"Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapWhite("Track-To")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('TRACK_TO')            self.get_target_and_subtarget(c)            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = Trueclass LinkInheritConstraint(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkInheritConstraintSockets)        self.init_parameters(additional_parameters={"Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapWhite("Child-Of")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('CHILD_OF')            self.get_target_and_subtarget(c)            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)                        props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)            c.set_inverse_pending            self.executed = Trueclass LinkInverseKinematics(MantisLinkNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkInverseKinematicsSockets)        self.init_parameters(additional_parameters={"Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])        def get_base_ik_bone(self, ik_bone):        chain_length : int = (self.evaluate_input("Chain Length"))        if not isinstance(chain_length, (int, float)):            raise GraphError(f"Chain Length must be an integer number in {self}::Chain Length")        if chain_length == 0:            chain_length = int("inf")                base_ik_bone = ik_bone; i=1        while (i<chain_length) and (base_ik_bone.parent):            base_ik_bone=base_ik_bone.parent; i+=1        return base_ik_bone        # We need to do the calculation in a "full circle", meaning the pole_angle    # can go over pi or less than -pi - but the actuall constraint value must    # be clamped in that range.    # so we simply wrap the value.    # not very efficient but it's OK    def set_pole_angle(self, constraint, angle: float) -> None:        from math import pi        from .utilities import wrap        constraint.pole_angle = wrap(-pi, pi, angle)        def calc_pole_angle_pre(self, c, ik_bone):        """            This function gets us most of the way to a correct IK pole angle. Unfortunately,            due to the unpredictable nature of the iterative IK calculation, I can't figure            out an exact solution. So we do a bisect search in calc_pole_angle_post().        """        # TODO: instead of these checks, convert all to armature local space. But this is tedious.        if not c.target:            raise GraphError(f"IK Constraint {self} must have target.")        elif c.target.type != "ARMATURE":            raise NotImplementedError(f"Currently, IK Constraint Target for {self} must be a bone within the same armature.")        if c.pole_target.type != "ARMATURE":            raise NotImplementedError(f"Currently, IK Constraint Pole Target for {self} must be a bone within the same armature.")        ik_handle = c.target.pose.bones[c.subtarget]        if ik_handle.id_data != ik_bone.id_data:            raise NotImplementedError(f"Currently, IK Constraint Target for {self} must be a bone within the same armature.")        ik_pole = c.pole_target.pose.bones[c.pole_subtarget]        if ik_pole.id_data != ik_bone.id_data:            raise NotImplementedError(f"Currently,IK Constraint Pole Target for {self} must be a bone within the same armature.")                base_ik_bone = self.get_base_ik_bone(ik_bone)                start_effector = base_ik_bone.bone.head_local        end_effector = ik_handle.bone.head_local        pole_location = ik_pole.bone.head_local        # this is the X-Axis of the bone's rest-pose, added to its bone        knee_location = base_ik_bone.bone.matrix_local.col[0].xyz+start_effector        ik_axis = (end_effector-start_effector).normalized()        from .utilities import project_point_to_plane        pole_planar_projection = project_point_to_plane(pole_location, start_effector, ik_axis)        # this planar projection is necessary because the IK axis is different than the base_bone's y axis        planar_projection = project_point_to_plane(knee_location, start_effector, ik_axis)        knee_direction =(planar_projection       -  start_effector).normalized()        pole_direction =(pole_planar_projection  -  start_effector).normalized()        return knee_direction.angle(pole_direction)    def calc_pole_angle_post(self, c, ik_bone, context):        """            This function should give us a completely accurate result for IK.        """        from time import time        start_time=time()        def signed_angle(vector_u, vector_v, normal):            # it seems that this fails if the vectors are exactly aligned under certain circumstances.            angle = vector_u.angle(vector_v, 0.0) # So we use a fallback of 0            # Normal specifies orientation            if angle != 0 and vector_u.cross(vector_v).angle(normal) < 1:                angle = -angle            return angle                # we have already checked for valid data.        ik_handle = c.target.pose.bones[c.subtarget]        base_ik_bone = self.get_base_ik_bone(ik_bone)        start_effector = base_ik_bone.bone.head_local        angle = c.pole_angle        dg = context.view_layer.depsgraph        dg.update()        ik_axis = (ik_handle.bone.head_local-start_effector).normalized()        center_point = start_effector +(ik_axis*base_ik_bone.bone.length)        knee_direction = base_ik_bone.bone.tail_local - center_point        current_knee_direction = base_ik_bone.tail-center_point        error=signed_angle(current_knee_direction, knee_direction, ik_axis)        if error == 0:            prGreen("No Fine-tuning needed."); return                # Flip it if needed        dot_before=current_knee_direction.dot(knee_direction)        if dot_before < 0 and angle!=0: # then it is not aligned and we should check the inverse            angle = -angle; c.pole_angle=angle            dg.update()            current_knee_direction = base_ik_bone.tail-center_point            dot_after=current_knee_direction.dot(knee_direction)            if dot_after < dot_before: # they are somehow less aligned                prPurple("Mantis has gone down an unexpected code path. Please report this as a bug.")                angle = -angle; self.set_pole_angle(c, angle)                dg.update()        # now we can do a bisect search to find the best value.        error_threshhold = FLOAT_EPSILON        max_iterations=600        error=signed_angle(current_knee_direction, knee_direction, ik_axis)        if error == 0:            prGreen("No Fine-tuning needed."); return        angle+=error        alt_angle = angle+(error*-2) # should be very near the center when flipped here        # we still need to bisect search because the relationship of pole_angle <==> error is somewhat unpredictable        upper_bounds = alt_angle if alt_angle > angle else angle        lower_bounds = alt_angle if alt_angle < angle else angle        i, error_identical = 0, 0        while ( True ):            if (i>=max_iterations):                prOrange(f"IK Pole Angle Set reached max iterations of {i-error_identical} in {time()-start_time} seconds")                break            if (abs(error)<error_threshhold) or (upper_bounds<=lower_bounds) or (error_identical > 3):                prPurple(f"IK Pole Angle Set converged after {i-error_identical} iterations with error={error} in {time()-start_time} seconds")                break            # get the center-point betweeen the bounds            try_angle = lower_bounds + (upper_bounds-lower_bounds)/2            self.set_pole_angle(c, try_angle); dg.update()            prev_error = error            error = signed_angle((base_ik_bone.tail-center_point), knee_direction, ik_axis)            error_identical+= int(error == prev_error)            if error>0: upper_bounds=try_angle            if error<0: lower_bounds=try_angle            i+=1    def bExecute(self, context):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapOrange("Inverse Kinematics")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            ik_bone = xf.bGetObject()            c = xf.bGetObject().constraints.new('IK')            self.get_target_and_subtarget(c)            self.get_target_and_subtarget(c, input_name = 'Pole Target')            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name                        self.bObject.append(c)            c.chain_count = 1 # so that, if there are errors, this doesn't print            #  a whole bunch of circular dependency crap from having infinite chain length            if (c.pole_target):                self.set_pole_angle(c, self.calc_pole_angle_pre(c, ik_bone))            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)            c.use_location   = self.evaluate_input("Position") > 0            c.use_rotation   = self.evaluate_input("Rotation") > 0        self.executed = True    def bFinalize(self, bContext = None):        # adding a test here        if bContext:            for i, constraint in enumerate(self.bObject):                ik_bone = self.GetxForm()[i].bGetObject(mode='POSE')                if constraint.pole_target:                    prWhite(f"Fine-tuning IK Pole Angle for {self}")                    # make sure to enable it first                    enabled_before = constraint.mute                    constraint.mute = False                    self.calc_pole_angle_post(constraint, ik_bone, bContext)                    constraint.mute = enabled_before        super().bFinalize(bContext)        def ik_report_error(pb, context, do_print=False):    dg = context.view_layer.depsgraph    dg.update()    loc1, rot_quaternion1, scl1 = pb.matrix.decompose()    loc2, rot_quaternion2, scl2 = pb.bone.matrix_local.decompose()    location_error=(loc1-loc2).length    rotation_error = rot_quaternion1.rotation_difference(rot_quaternion2).angle    scale_error = (scl1-scl2).length    if location_error < FLOAT_EPSILON: location_error = 0    if abs(rotation_error) < FLOAT_EPSILON: rotation_error = 0    if scale_error < FLOAT_EPSILON: scale_error = 0    if do_print:        print (f"IK Location Error: {location_error}")        print (f"IK Rotation Error: {rotation_error}")        print (f"IK Scale Error   : {scale_error}")    return (location_error, rotation_error, scale_error) # This is kinda a weird design decision?class LinkDrivenParameter(MantisLinkNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkDrivenParameterSockets)        self.init_parameters(additional_parameters={ "Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, bContext = None,):        prepare_parameters(self)        prGreen("Executing Driven Parameter node")        prop = self.evaluate_input("Parameter")        index = self.evaluate_input("Index")        value = self.evaluate_input("Value")        for xf in self.GetxForm():            ob = xf.bGetObject(mode="POSE")            # IMPORTANT: this node only works on pose bone attributes.            self.bObject.append(ob)            length=1            if hasattr(ob, prop):                try:                    length = len(getattr(ob, prop))                except TypeError:                    pass                except AttributeError:                    pass            else:                raise AttributeError(f"Cannot Set value {prop} on object because it does not exist.")            def_value = 0.0            if length>1:                def_value=[0.0]*length                self.parameters["Value"] = tuple( 0.0 if i != index else value for i in range(length))            props_sockets = {                prop: ("Value", def_value)            }            evaluate_sockets(self, ob, props_sockets)        self.executed = True    def bFinalize(self, bContext = None):        driver = self.evaluate_input("Value")        try:            for i, val in enumerate(self.parameters["Value"]):                from .drivers import MantisDriver                if isinstance(val, MantisDriver):                    driver["ind"] = i                    val = driver        except AttributeError:            self.parameters["Value"] = driver        except TypeError:            self.parameters["Value"] = driver        super().bFinalize(bContext)    class LinkArmature(MantisLinkNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree,):        super().__init__(signature, base_tree, LinkArmatureSockets)        self.init_parameters(additional_parameters={"Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])        setup_custom_props(self) # <-- this takes care of the runtime-added sockets    def bExecute(self, bContext = None,):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapOrange("Armature")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('ARMATURE')            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            # get number of targets            num_targets = len( list(self.inputs.values())[6:] )//2                        props_sockets = self.gen_property_socket_map()            targets_weights = {}            for i in range(num_targets):                target = c.targets.new()                target_input_name = list(self.inputs.keys())[i*2+6  ]                weight_input_name = list(self.inputs.keys())[i*2+6+1]                self.get_target_and_subtarget(target, target_input_name)                weight_value=self.evaluate_input(weight_input_name)                if not isinstance(weight_value, float):                    weight_value=0                targets_weights[i]=weight_value                props_sockets["targets[%d].weight" % i] = (weight_input_name, 0)                # targets_weights.append({"weight":(weight_input_name, 0)})            evaluate_sockets(self, c, props_sockets)            for target, value in targets_weights.items():                c.targets[target].weight=value        self.executed = Trueclass LinkSplineIK(MantisLinkNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree, LinkSplineIKSockets)        self.init_parameters(additional_parameters={"Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, bContext = None,):        prepare_parameters(self)        if not self.inputs['Target'].is_linked:            raise GraphError(f"ERROR: {self} is not connected to a target curve.")        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapOrange("Spline-IK")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('SPLINE_IK')            # set the spline - we need to get the right one             spline_index = self.evaluate_input("Spline Index")            from .utilities import get_extracted_spline_object            proto_curve = self.inputs['Target'].links[0].from_node.bGetObject()            curve = get_extracted_spline_object(proto_curve, spline_index, self.mContext)            # link it to the view layer            if (curve.name not in bContext.view_layer.active_layer_collection.collection.objects):                bContext.view_layer.active_layer_collection.collection.objects.link(curve)            c.target=curve            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = True    class LinkFloor(MantisLinkNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree,):        super().__init__(signature, base_tree, LinkFloorSockets)        self.init_parameters(additional_parameters={"Name":None })        self.set_traverse([("Input Relationship", "Output Relationship")])    def bExecute(self, bContext = None,):        prepare_parameters(self)        for xf in self.GetxForm():            print(wrapGreen("Creating ")+wrapOrange("Floor")+                wrapGreen(" Constraint for bone: ") +                wrapOrange(xf.bGetObject().name))            c = xf.bGetObject().constraints.new('FLOOR')            self.get_target_and_subtarget(c)            if constraint_name := self.evaluate_input("Name"):                c.name = constraint_name            self.bObject.append(c)            props_sockets = self.gen_property_socket_map()            evaluate_sockets(self, c, props_sockets)        self.executed = True
 |