| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541 |
- from .node_container_common import *
- from .base_definitions import MantisNode, NodeSocket
- from .xForm_containers import xFormArmature, xFormBone
- from math import pi, tau
- def TellClasses():
- return [
- # utility
- InputFloat,
- InputIntNode,
- InputVector,
- InputBoolean,
- InputBooleanThreeTuple,
- InputRotationOrder,
- InputTransformSpace,
- InputString,
- InputMatrix,
- InputExistingGeometryObject,
- InputExistingGeometryData,
- UtilityGeometryOfXForm,
- UtilityNameOfXForm,
- UtilityPointFromCurve,
- UtilityMatrixFromCurve,
- UtilityMatricesFromCurve,
- UtilityNumberOfCurveSegments,
- UtilityMatrixFromCurveSegment,
- UtilityMetaRig,
- UtilityBoneProperties,
- UtilityDriverVariable,
- UtilityDriver,
- UtilityFCurve,
- UtilityKeyframe,
- UtilitySwitch,
- UtilityCombineThreeBool,
- UtilityCombineVector,
- UtilitySeparateVector,
- UtilityCatStrings,
- UtilityGetBoneLength,
- UtilityPointFromBoneMatrix,
- UtilitySetBoneLength,
- UtilityMatrixSetLocation,
- UtilityMatrixGetLocation,
- UtilityMatrixFromXForm,
- UtilityAxesFromMatrix,
- UtilityBoneMatrixHeadTailFlip,
- UtilityMatrixTransform,
- UtilityTransformationMatrix,
- UtilityIntToString,
- UtilityArrayGet,
- UtilitySetBoneMatrixTail,
- # Control flow switches
- UtilityCompare,
- UtilityChoose,
- # useful NoOp:
- UtilityPrint,
- ]
- def matrix_from_head_tail(head, tail, normal=None):
- from mathutils import Vector, Quaternion, Matrix
- if normal is None:
- rotation = Vector((0,1,0)).rotation_difference((tail-head).normalized()).to_matrix()
- m= Matrix.LocRotScale(head, rotation, None)
- m[3][3] = (tail-head).length
- else: # construct a basis matrix
- m = Matrix.Identity(3)
- axis = (tail-head).normalized()
- conormal = axis.cross(normal)
- m[0]=conormal
- m[1]=axis
- m[2]=normal
- m = m.transposed().to_4x4()
- return m
- def cleanup_curve(curve_name : str, execution_id : str) -> None:
- import bpy
- curve = bpy.data.objects.get(curve_name)
- m_name = curve.name+'.'+ execution_id
- if (mesh := bpy.data.meshes.get(m_name)):
- bpy.data.meshes.remove(mesh)
- #*#-------------------------------#++#-------------------------------#*#
- # U T I L I T Y N O D E S
- #*#-------------------------------#++#-------------------------------#*#
- class InputFloat(MantisNode):
- '''A node representing float input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = ["Float Input"]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
- class InputIntNode(MantisNode):
- '''A node representing integer input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = ["Integer"]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
-
- class InputVector(MantisNode):
- '''A node representing vector input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
- class InputBoolean(MantisNode):
- '''A node representing boolean input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
- class InputBooleanThreeTuple(MantisNode):
- '''A node representing a tuple of three booleans'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
-
- class InputRotationOrder(MantisNode):
- '''A node representing string input for rotation order'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
-
- class InputTransformSpace(MantisNode):
- '''A node representing string input for transform space'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
-
- def evaluate_input(self, input_name):
- return self.parameters[""]
-
- class InputString(MantisNode):
- '''A node representing string input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
-
- class InputMatrix(MantisNode):
- '''A node representing axis-angle quaternion input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = ["Matrix",]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = 'UTILITY'
- self.prepared = True
- self.executed = True
- class UtilityMatrixFromCurve(MantisNode):
- '''Get a matrix from a curve'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Curve" ,
- "Total Divisions" ,
- "Matrix Index" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Matrix
- import bpy
- m = Matrix.Identity(4)
- curve = bpy.data.objects.get(self.evaluate_input("Curve"))
- if not curve:
- prRed(f"No curve found for {self}. Using an Identity matrix instead.")
- m[3][3] = 1.0
- else:
- from .utilities import mesh_from_curve, data_from_ribbon_mesh
- if not bContext:
- # TODO find out if this is bad or a HACK or if it is OK
- bContext = bpy.context
- # IMPORTANT TODO: I need to be able to reuse this m
- # First, try to get the one we made before
- m_name = curve.name+'.'+self.base_tree.execution_id
- if not (m := bpy.data.meshes.get(m_name)):
- m = mesh_from_curve(curve, bContext)
- m.name = m_name
- #
- num_divisions = self.evaluate_input("Total Divisions")
- m_index = self.evaluate_input("Matrix Index")
- factors = [1/num_divisions*m_index, 1/num_divisions*(m_index+1)]
- data = data_from_ribbon_mesh(m, [factors], curve.matrix_world)
- head=data[0][0][0]
- tail= data[0][0][1]
- axis = (tail-head).normalized()
- normal=data[0][2][0]
- # make sure the normal is perpendicular to the tail
- from .utilities import make_perpendicular
- normal = make_perpendicular(axis, normal)
- m = matrix_from_head_tail(head, tail, normal)
- # this is in world space... let's just convert it back
- m.translation = head - curve.location
- m[3][3]=(tail-head).length
- # TODO HACK TODO
- # all the nodes should work in world-space, and it should be the responsibility
- # of the xForm node to convert!
- self.parameters["Matrix"] = m
- self.prepared = True
- self.executed = True
-
- def bFinalize(self, bContext=None):
- cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)
- class UtilityPointFromCurve(MantisNode):
- '''Get a point from a curve'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Curve" ,
- "Factor" ,
- ]
- outputs = [
- "Point" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- import bpy
- curve = bpy.data.objects.get(self.evaluate_input("Curve"))
- if not curve:
- raise RuntimeError(f"No curve found for {self}.")
- else:
- from .utilities import mesh_from_curve, data_from_ribbon_mesh
- if not bContext:
- # TODO find out if this is bad or a HACK or if it is OK
- bContext = bpy.context
- # IMPORTANT TODO: I need to be able to reuse this m
- # First, try to get the one we made before
- m_name = curve.name+'.'+self.base_tree.execution_id
- if not (m := bpy.data.meshes.get(m_name)):
- m = mesh_from_curve(curve, bContext)
- m.name = m_name
- #
- num_divisions = 1
- factors = [self.evaluate_input("Factor")]
- data = data_from_ribbon_mesh(m, [factors], curve.matrix_world)
- p = data[0][0][0] - curve.location
- self.parameters["Point"] = p
- self.prepared, self.executed = True, True
-
- def bFinalize(self, bContext=None):
- cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)
- class UtilityMatricesFromCurve(MantisNode):
- '''Get matrices from a curve'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Curve" ,
- "Total Divisions" ,
- ]
- outputs = [
- "Matrices" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- import time
- # start_time = time.time()
- #
- from mathutils import Matrix
- import bpy
- m = Matrix.Identity(4)
- curve_name = self.evaluate_input("Curve")
- curve = bpy.data.objects.get(curve_name)
- if not curve:
- prRed(f"No curve found for {self}. Using an Identity matrix instead.")
- m[3][3] = 1.0
- else:
- from .utilities import mesh_from_curve, data_from_ribbon_mesh
- if not bContext:
- bContext = bpy.context
- m_name = curve.name+'.'+self.base_tree.execution_id
- if not (mesh := bpy.data.meshes.get(m_name)):
- mesh = mesh_from_curve(curve, bContext)
- mesh.name = m_name
- num_divisions = self.evaluate_input("Total Divisions")
- factors = [0.0] + [(1/num_divisions*(i+1)) for i in range(num_divisions)]
- data = data_from_ribbon_mesh(mesh, [factors], curve.matrix_world)
-
- # 0 is the spline index. 0 selects points as opposed to normals or whatever.
- from .utilities import make_perpendicular
- matrices = [matrix_from_head_tail(
- data[0][0][i],
- data[0][0][i+1],
- make_perpendicular((data[0][0][i+1]-data[0][0][i]).normalized(), data[0][2][i]),) \
- for i in range(num_divisions)]
-
- for link in self.outputs["Matrices"].links:
- for i, m in enumerate(matrices):
- name = "Matrix"+str(i).zfill(4)
- if not (out := self.outputs.get(name)): # reuse them if there are multiple links.
- out = self.outputs[name] = NodeSocket(name = name, node=self)
- c = out.connect(link.to_node, link.to_socket)
- # prOrange(c)
- self.parameters[name] = m
- # print (mesh)
- link.die()
- self.prepared = True
- self.executed = True
- # prGreen(f"Matrices from curves took {time.time() - start_time} seconds.")
-
- def bFinalize(self, bContext=None):
- import bpy
- curve_name = self.evaluate_input("Curve")
- curve = bpy.data.objects.get(curve_name)
- m_name = curve.name+'.'+self.base_tree.execution_id
- if (mesh := bpy.data.meshes.get(m_name)):
- prGreen(f"Freeing mesh data {m_name}...")
- bpy.data.meshes.remove(mesh)
- class UtilityNumberOfCurveSegments(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Curve" ,
- "Spline Index" ,
- ]
- outputs = [
- "Number of Segments" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- import bpy
- curve_name = self.evaluate_input("Curve")
- curve = bpy.data.objects.get(curve_name)
- spline = curve.data.splines[self.evaluate_input("Spline Index")]
- if spline.type == "BEZIER":
- self.parameters["Number of Segments"] = len(spline.bezier_points)-1
- else:
- self.parameters["Number of Segments"] = len(spline.points)-1
- self.prepared = True
- self.executed = True
- class UtilityMatrixFromCurveSegment(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Curve" ,
- "Spline Index" ,
- "Segment Index" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Matrix
- import bpy
- curve = bpy.data.objects.get(self.evaluate_input("Curve"))
- if not curve:
- raise RuntimeError(f"No curve found for {self}.")
- else:
- from .utilities import mesh_from_curve, data_from_ribbon_mesh
- if not bContext: bContext = bpy.context
- m_name = curve.name+'.'+self.base_tree.execution_id
- if not (m := bpy.data.meshes.get(m_name)):
- m = mesh_from_curve(curve, bContext)
- m.name = m_name
- # this section is dumb, but it is because the data_from_ribbon_mesh
- # function is designed to pull data from many splines at once (for optimization)
- # so we have to give it empty splines for each one we skip.
- # TODO: Refactor this to make it so I can select spline index
- spline_index = self.evaluate_input("Spline Index")
- spline = curve.data.splines[spline_index]
- splines_factors = [ [] for i in range (spline_index-1)]
- factors = [0.0]
- points = spline.bezier_points if spline.type == 'BEZIER' else spline.points
- total_length=0.0
- for i in range(len(points)-1):
- total_length+= (seg_length := (points[i+1].co - points[i].co).length)
- factors.append(seg_length)
- prev_length = 0.0
- for i in range(len(factors)):
- factors[i] = prev_length+factors[i]/total_length
- prev_length=factors[i]
- # Why does this happen? Floating point error?
- if factors[i]>1.0: factors[i] = 1.0
- splines_factors.append(factors)
- #
- data = data_from_ribbon_mesh(m, splines_factors, curve.matrix_world)
- segment_index = self.evaluate_input("Segment Index")
- head=data[spline_index][0][segment_index]
- tail= data[spline_index][0][segment_index+1]
- axis = (tail-head).normalized()
- normal=data[spline_index][2][segment_index]
- # make sure the normal is perpendicular to the tail
- from .utilities import make_perpendicular
- normal = make_perpendicular(axis, normal)
- m = matrix_from_head_tail(head, tail, normal)
- m.translation = head - curve.location
- m[3][3]=(tail-head).length
- self.parameters["Matrix"] = m
- self.prepared, self.executed = True, True
-
- def bFinalize(self, bContext=None):
- cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)
- class UtilityMetaRig(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Meta-Armature" ,
- "Meta-Bone" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- #kinda clumsy, whatever
- import bpy
- from mathutils import Matrix
- m = Matrix.Identity(4)
-
- meta_rig = self.evaluate_input("Meta-Armature")
- meta_bone = self.evaluate_input("Meta-Bone")
-
- if meta_rig:
- if ( armOb := bpy.data.objects.get(meta_rig) ):
- m = armOb.matrix_world
- if ( b := armOb.data.bones.get(meta_bone)):
- # calculate the correct object-space matrix
- m = Matrix.Identity(3)
- bones = [] # from the last ancestor, mult the matrices until we get to b
- while (b): bones.append(b); b = b.parent
- while (bones): b = bones.pop(); m = m @ b.matrix
- m = Matrix.Translation(b.head_local) @ m.to_4x4()
- #
- m[3][3] = b.length # this is where I arbitrarily decided to store length
- # else:
- # prRed("no bone for MetaRig node ", self)
- else:
- raise RuntimeError(wrapRed(f"No meta-rig input for MetaRig node {self}"))
-
- self.parameters["Matrix"] = m
- self.prepared = True
- self.executed = True
- class UtilityBoneProperties(MantisNode):
- '''A node representing a bone's gettable properties'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [
- "matrix" ,
- "matrix_local" ,
- "matrix_basis" ,
- "head" ,
- "tail" ,
- "length" ,
- "rotation" ,
- "location" ,
- "scale" ,
- ]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- self.prepared = True
- self.executed = True
- def fill_parameters(self, prototype=None):
- return
-
- # TODO this should probably be moved to Links
- class UtilityDriverVariable(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Variable Type" ,
- "Property" ,
- "Property Index" ,
- "Evaluation Space",
- "Rotation Mode" ,
- "xForm 1" ,
- "xForm 2" ,
- ]
- outputs = [
- "Driver Variable",
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "DRIVER" # MUST be run in Pose mode
- self.prepared = True
-
- def evaluate_input(self, input_name):
- if input_name == 'Property':
- if self.inputs.get('Property'):
- if self.inputs['Property'].is_linked:
- # get the name instead...
- trace = trace_single_line(self, input_name)
- return trace[1].name # the name of the socket
- return self.parameters["Property"]
- return super().evaluate_input(input_name)
-
- def GetxForm(self, index=1):
- trace = trace_single_line(self, "xForm 1" if index == 1 else "xForm 2")
- for node in trace[0]:
- if (node.__class__ in [xFormArmature, xFormBone]):
- return node #this will fetch the first one, that's good!
- return None
- def bExecute(self, bContext = None,):
- prepare_parameters(self)
- #prPurple ("Executing Driver Variable Node")
- xForm1 = self.GetxForm()
- xForm2 = self.GetxForm(index=2)
- # kinda clumsy
- if xForm1 : xForm1 = xForm1.bGetObject()
- if xForm2 : xForm2 = xForm2.bGetObject()
-
- v_type = self.evaluate_input("Variable Type")
- i = self.evaluate_input("Property Index"); dVarChannel = ""
- if (i >= 0): #negative values will use the vector property.
- if self.evaluate_input("Property") == 'location':
- if i == 0: dVarChannel = "LOC_X"
- elif i == 1: dVarChannel = "LOC_Y"
- elif i == 2: dVarChannel = "LOC_Z"
- else: raise RuntimeError("Invalid property index for %s" % self)
- if self.evaluate_input("Property") == 'rotation':
- if i == 0: dVarChannel = "ROT_X"
- elif i == 1: dVarChannel = "ROT_Y"
- elif i == 2: dVarChannel = "ROT_Z"
- elif i == 3: dVarChannel = "ROT_W"
- else: raise RuntimeError("Invalid property index for %s" % self)
- if self.evaluate_input("Property") == 'scale':
- if i == 0: dVarChannel = "SCALE_X"
- elif i == 1: dVarChannel = "SCALE_Y"
- elif i == 2: dVarChannel = "SCALE_Z"
- elif i == 3: dVarChannel = "SCALE_AVG"
- else: raise RuntimeError("Invalid property index for %s" % self)
- if self.evaluate_input("Property") == 'scale_average':
- dVarChannel = "SCALE_AVG"
- if dVarChannel: v_type = "TRANSFORMS"
-
- my_var = {
- "owner" : xForm1, # will be filled in by Driver
- "prop" : self.evaluate_input("Property"), # will be filled in by Driver
- "type" : v_type,
- "space" : self.evaluate_input("Evaluation Space"),
- "rotation_mode" : self.evaluate_input("Rotation Mode"),
- "xForm 1" : xForm1,#self.GetxForm(index = 1),
- "xForm 2" : xForm2,#self.GetxForm(index = 2),
- "channel" : dVarChannel,}
-
- # Push parameter to downstream connected node.connected:
- if (out := self.outputs["Driver Variable"]).is_linked:
- self.parameters[out.name] = my_var
- for link in out.links:
- link.to_node.parameters[link.to_socket] = my_var
- self.executed = True
-
- class UtilityKeyframe(MantisNode):
- '''A node representing a keyframe for a F-Curve'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Frame" ,
- "Value" ,
- ]
- outputs = [
- "Keyframe" ,
- ]
- additional_parameters = {"Keyframe":{}}
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters( additional_parameters=additional_parameters)
- self.node_type = "DRIVER" # MUST be run in Pose mode
- setup_custom_props(self)
- def bPrepare(self, bContext = None,):
- key = self.parameters["Keyframe"]
- from mathutils import Vector
- key["co"]= Vector( (self.evaluate_input("Frame"), self.evaluate_input("Value"),))
- key["type"]="GENERATED"
- key["interpolation"] = "LINEAR"
- # eventually this will have the right data, TODO
- # self.parameters["Keyframe"] = key
- self.prepared = True
- self.executed = True
- class UtilityFCurve(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Extrapolation Mode",
- ]
- outputs = [
- "fCurve",
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- setup_custom_props(self)
- self.prepared = True
- def evaluate_input(self, input_name):
- return super().evaluate_input(input_name)
- def bExecute(self, bContext = None,):
- prepare_parameters(self)
- from .utilities import get_node_prototype
- np = get_node_prototype(self.signature, self.base_tree)
- extrap_mode = self.evaluate_input("Extrapolation Mode")
- keys = [] # ugly but whatever
- #['amplitude', 'back', 'bl_rna', 'co', 'co_ui', 'easing', 'handle_left', 'handle_left_type', 'handle_right', 'handle_right_type',
- # 'interpolation', 'period', 'rna_type', 'select_control_point', 'select_left_handle', 'select_right_handle', 'type']
- for k in self.inputs.keys():
- if k == 'Extrapolation Mode' : continue
- # print (self.inputs[k])
- if (key := self.evaluate_input(k)) is None:
- prOrange(f"WARN: No keyframe connected to {self}:{k}. Skipping Link.")
- else:
- keys.append(key)
- if len(keys) <1:
- prOrange(f"WARN: no keys in fCurve {self}.")
- keys.append(extrap_mode)
- self.parameters["fCurve"] = keys
- self.executed = True
- #TODO make the fCurve data a data class instead of a dict
- class UtilityDriver(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Driver Type" ,
- "Expression" ,
- "fCurve" ,
- ]
- outputs = [
- "Driver",
- ]
- from .drivers import MantisDriver
- additional_parameters = {
- "Driver":MantisDriver(),
- }
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters(additional_parameters=additional_parameters)
- self.node_type = "DRIVER" # MUST be run in Pose mode
- setup_custom_props(self)
- self.prepared = True
- def bExecute(self, bContext = None,):
- prepare_parameters(self)
- from .drivers import MantisDriver
- #prPurple("Executing Driver Node")
- my_vars = []
- keys = self.evaluate_input("fCurve")
- if keys is None or len(keys) <2:
- prWhite(f"INFO: no fCurve connected to {self}; using default fCurve.")
- from mathutils import Vector
- keys = [
- {"co":Vector( (0, 0,)), "type":"GENERATED", "interpolation":"LINEAR" },
- {"co":Vector( (1, 1,)), "type":"GENERATED", "interpolation":"LINEAR" },
- "CONSTANT",]
- for inp in list(self.inputs.keys() )[3:]:
- if (new_var := self.evaluate_input(inp)):
- new_var["name"] = inp
- my_vars.append(new_var)
- else:
- raise RuntimeError(f"Failed to initialize Driver variable for {self}")
- my_driver ={ "owner" : None,
- "prop" : None, # will be filled out in the node that uses the driver
- "expression" : self.evaluate_input("Expression"),
- "ind" : -1, # same here
- "type" : self.evaluate_input("Driver Type"),
- "vars" : my_vars,
- "keys" : keys[:-1],
- "extrapolation" : keys[-1] }
-
- my_driver = MantisDriver(my_driver)
-
- self.parameters["Driver"].update(my_driver)
- print("Initializing driver %s " % (wrapPurple(self.__repr__())) )
- self.executed = True
- class UtilitySwitch(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = {
- "Parameter" ,
- "Parameter Index" ,
- "Invert Switch" ,
- }
- outputs = [
- "Driver",
- ]
- from .drivers import MantisDriver
- additional_parameters = {
- "Driver":MantisDriver(),
- }
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters(additional_parameters=additional_parameters)
- self.node_type = "DRIVER" # MUST be run in Pose mode
- self.prepared = True
- def evaluate_input(self, input_name):
- if input_name == 'Parameter':
- if self.inputs['Parameter'].is_connected:
- trace = trace_single_line(self, input_name)
- return trace[1].name # the name of the socket
- return self.parameters["Parameter"]
- return super().evaluate_input(input_name)
- def GetxForm(self,):
- trace = trace_single_line(self, "Parameter" )
- for node in trace[0]:
- if (node.__class__ in [xFormArmature, xFormBone]):
- return node #this will fetch the first one, that's good!
- return None
- def bExecute(self, bContext = None,):
- #prepare_parameters(self)
- #prPurple ("Executing Switch Node")
- xForm = self.GetxForm()
- if xForm : xForm = xForm.bGetObject()
- if not xForm:
- raise RuntimeError("Could not evaluate xForm for %s" % self)
- from .drivers import MantisDriver
- my_driver ={ "owner" : None,
- "prop" : None, # will be filled out in the node that uses the driver
- "ind" : -1, # same here
- "type" : "SCRIPTED",
- "vars" : [ { "owner" : xForm,
- "prop" : self.evaluate_input("Parameter"),
- "name" : "a",
- "type" : "SINGLE_PROP", } ],
- "keys" : [ { "co":(0,0),
- "interpolation": "LINEAR",
- "type":"KEYFRAME",}, #display type
- { "co":(1,1),
- "interpolation": "LINEAR",
- "type":"KEYFRAME",},],
- "extrapolation": 'CONSTANT', }
- my_driver ["expression"] = "a"
-
- my_driver = MantisDriver(my_driver)
- # this makes it so I can check for type later!
-
- if self.evaluate_input("Invert Switch") == True:
- my_driver ["expression"] = "1 - a"
-
- # this way, regardless of what order things are handled, the
- # driver is sent to the next node.
- # In the case of some drivers, the parameter may be sent out
- # before it's filled in (because there is a circular dependency)
- # I want to support this behaviour because Blender supports it.
- # We do not make a copy. We update the driver, so that
- # the same instance is filled out.
- self.parameters["Driver"].update(my_driver)
- print("Initializing driver %s " % (wrapPurple(self.__repr__())) )
- self.executed = True
- class UtilityCombineThreeBool(MantisNode):
- '''A node for combining three booleans into a boolean three-tuple'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "X" ,
- "Y" ,
- "Z" ,
- ]
- outputs = [
- "Three-Bool",
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- self.parameters["Three-Bool"] = (
- self.evaluate_input("X"),
- self.evaluate_input("Y"),
- self.evaluate_input("Z"), )
- self.prepared = True
- self.executed = True
- # Note this is a copy of the above. This needs to be de-duplicated.
- class UtilityCombineVector(MantisNode):
- '''A node for combining three floats into a vector'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- super().__init__(signature, base_tree)
- inputs = [
- "X" ,
- "Y" ,
- "Z" ,
- ]
- outputs = [
- "Vector",
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- #prPurple("Executing CombineVector Node")
- prepare_parameters(self)
- self.parameters["Vector"] = (
- self.evaluate_input("X"),
- self.evaluate_input("Y"),
- self.evaluate_input("Z"), )
- self.prepared = True
- self.executed = True
-
- class UtilitySeparateVector(MantisNode):
- '''A node for separating a vector into three floats'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Vector"
- ]
- outputs = [
- "X" ,
- "Y" ,
- "Z" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- self.parameters["X"] = self.evaluate_input("Vector")[0]
- self.parameters["Y"] = self.evaluate_input("Vector")[1]
- self.parameters["Z"] = self.evaluate_input("Vector")[2]
- self.prepared = True
- self.executed = True
- class UtilityCatStrings(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "String_1" ,
- "String_2" ,
- ]
- outputs = [
- "OutputString" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- self.parameters["OutputString"] = self.evaluate_input("String_1")+self.evaluate_input("String_2")
- self.prepared = True
- self.executed = True
- class InputExistingGeometryObject(MantisNode):
- '''A node representing an existing object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Name" ,
- ]
- outputs = [
- "Object" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "XFORM"
-
- def bPrepare(self, bContext=None):
- from bpy import data
- name = self.evaluate_input("Name")
- if name:
- self.bObject = data.objects.get( name )
- else:
- self.bObject = None
- if self is None and (name := self.evaluate_input("Name")):
- prRed(f"No object found with name {name} in {self}")
- self.prepared = True; self.executed = True
- def bGetObject(self, mode=''):
- return self.bObject
- class InputExistingGeometryData(MantisNode):
- '''A node representing existing object data'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Name" ,
- ]
- outputs = [
- "Geometry" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- self.prepared = True
- self.executed = True
- # the mode argument is only for interface consistency
- def bGetObject(self, mode=''):
- from bpy import data
- # first try Curve, then try Mesh
- bObject = data.curves.get(self.evaluate_input("Name"))
- if not bObject:
- bObject = data.meshes.get(self.evaluate_input("Name"))
- if bObject is None:
- raise RuntimeError(f"Could not find a mesh or curve datablock named \"{self.evaluate_input('Name')}\" for node {self}")
- return bObject
- class UtilityGeometryOfXForm(MantisNode):
- '''A node representing existing object data'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "xForm" ,
- ]
- outputs = [
- "Geometry" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- self.prepared = True
- self.executed = True
- # mode for interface consistency
- def bGetObject(self, mode=''):
- if not (self.inputs.get('xForm') and self.inputs['xForm'].links):
- prOrange(f"WARN: Cannot retrieve data from {self}, there is no xForm node connected.")
- return None
- xf = self.inputs["xForm"].links[0].from_node
- if xf.node_type == 'XFORM':
- xf_ob = xf.bGetObject()
- if xf_ob.type in ['MESH', 'CURVE']:
- return xf_ob.data
- prOrange(f"WARN: Cannot retrieve data from {self}, the connected xForm is not a mesh or curve.")
- return None
- class UtilityNameOfXForm(MantisNode):
- '''A node representing existing object data'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "xForm" ,
- ]
- outputs = [
- "Name" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- # mode for interface consistency
- def bPrepare(self, bContext = None,):
- if not (self.inputs.get('xForm') and self.inputs['xForm'].links):
- prOrange(f"WARN: Cannot retrieve data from {self}, there is no xForm node connected.")
- return ''
- xf = self.inputs["xForm"].links[0].from_node
- self.parameters["Name"] = xf.evaluate_input('Name')
- self.prepared, self.executed = True, True
- class UtilityGetBoneLength(MantisNode):
- '''A node to get the length of a bone matrix'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Bone Matrix" ,
- ]
- outputs = [
- "Bone Length" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- if l := self.evaluate_input("Bone Matrix"):
- self.parameters["Bone Length"] = l[3][3]
- self.prepared = True
- self.executed = True
- class UtilityPointFromBoneMatrix(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Bone Matrix" ,
- "Head/Tail" ,
- ]
- outputs = [
- "Point" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- # TODO: find out why this is sometimes not ready at bPrepare phase
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- matrix = self.evaluate_input("Bone Matrix")
- head, rotation, _scale = matrix.copy().decompose()
- tail = head.copy() + (rotation @ Vector((0,1,0)))*matrix[3][3]
- self.parameters["Point"] = head.lerp(tail, self.evaluate_input("Head/Tail"))
- self.prepared = True
- self.executed = True
- class UtilitySetBoneLength(MantisNode):
- '''Sets the length of a Bone's matrix'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Bone Matrix" ,
- "Length" ,
- ]
- outputs = [
- "Bone Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- if matrix := self.evaluate_input("Bone Matrix"):
- matrix = matrix.copy()
- # print (self.inputs["Length"].links)
- matrix[3][3] = self.evaluate_input("Length")
- self.parameters["Length"] = self.evaluate_input("Length")
- self.parameters["Bone Matrix"] = matrix
- self.prepared = True
- self.executed = True
-
- class UtilityMatrixSetLocation(MantisNode):
- '''Sets the location of a matrix'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Matrix" ,
- "Location" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- if matrix := self.evaluate_input("Matrix"):
- matrix = matrix.copy()
- # print (self.inputs["Length"].links)
- loc = self.evaluate_input("Location")
- matrix[0][3] = loc[0]; matrix[1][3] = loc[1]; matrix[2][3] = loc[2]
- self.parameters["Matrix"] = matrix
- self.prepared = True
- self.executed = True
- class UtilityMatrixGetLocation(MantisNode):
- '''Gets the location of a matrix'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Matrix" ,
- ]
- outputs = [
- "Location" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- if matrix := self.evaluate_input("Matrix"):
- self.parameters["Location"] = matrix.to_translation()
- self.prepared = True; self.executed = True
- class UtilityMatrixFromXForm(MantisNode):
- """Returns the matrix of the given xForm node."""
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "xForm" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.node_type = "UTILITY"
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
-
- def GetxForm(self):
- trace = trace_single_line(self, "xForm")
- for node in trace[0]:
- if (node.node_type == 'XFORM'):
- return node
- raise GraphError("%s is not connected to an xForm" % self)
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector, Matrix
- self.parameters["Matrix"] = Matrix.Identity(4)
- if matrix := self.GetxForm().parameters.get("Matrix"):
- self.parameters["Matrix"] = matrix.copy()
- elif hasattr(self.GetxForm().bObject, "matrix"):
- self.parameters["Matrix"] = self.GetxForm().bObject.matrix.copy()
- elif hasattr(self.GetxForm().bObject, "matrix_world"):
- self.parameters["Matrix"] = self.GetxForm().bObject.matrix_world.copy()
- else:
- prRed(f"Could not find matrix for {self} - check if the referenced object exists.")
- self.prepared = True; self.executed = True
- class UtilityAxesFromMatrix(MantisNode):
- """Returns the axes of the given matrix."""
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Matrix" ,
- ]
- outputs = [
- "X Axis" ,
- "Y Axis" ,
- "Z Axis" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- if matrix := self.evaluate_input("Matrix"):
- matrix= matrix.copy().to_3x3()
- self.parameters['X Axis'] = matrix @ Vector((1,0,0))
- self.parameters['Y Axis'] = matrix @ Vector((0,1,0))
- self.parameters['Z Axis'] = matrix @ Vector((0,0,1))
- self.prepared = True; self.executed = True
- class UtilityBoneMatrixHeadTailFlip(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Bone Matrix" ,
- ]
- outputs = [
- "Bone Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Vector, Matrix, Quaternion
- from bpy.types import Bone
- if matrix := self.evaluate_input("Bone Matrix"):
- axis, roll = Bone.AxisRollFromMatrix(matrix.to_3x3())
- new_mat = Bone.MatrixFromAxisRoll(-1*axis, roll)
- length = matrix[3][3]
- new_mat.resize_4x4() # last column contains
- new_mat[0][3] = matrix[0][3] + axis[0]*length # x location
- new_mat[1][3] = matrix[1][3] + axis[1]*length # y location
- new_mat[2][3] = matrix[2][3] + axis[2]*length # z location
- new_mat[3][3] = length # length
- self.parameters["Bone Matrix"] = new_mat
- self.prepared, self.executed = True, True
- class UtilityMatrixTransform(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Matrix 1" ,
- "Matrix 2" ,
- ]
- outputs = [
- "Out Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- mat1 = self.evaluate_input("Matrix 1"); mat2 = self.evaluate_input("Matrix 2")
- if mat1 and mat2:
- mat1copy = mat1.copy()
- self.parameters["Out Matrix"] = mat2 @ mat1copy
- self.parameters["Out Matrix"].translation = mat1copy.to_translation()+ mat2.to_translation()
- else:
- raise RuntimeError(wrapRed(f"Node {self} did not receive all matrix inputs... found input 1? {mat1 is not None}, 2? {mat2 is not None}"))
- self.prepared = True
- self.executed = True
- class UtilityTransformationMatrix(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Operation" ,
- "Vector" ,
- "W" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Matrix, Vector
- if (operation := self.evaluate_input("Operation")) == 'ROTATE_AXIS_ANGLE':
- # this can, will, and should fail if the axis is 0,0,0
- self.parameters["Matrix"] = rotMat = Matrix.Rotation(self.evaluate_input("W"), 4, Vector(self.evaluate_input("Vector")).normalized())
- elif (operation := self.evaluate_input("Operation")) == 'TRANSLATE':
- m = Matrix.Identity(4)
- if axis := self.evaluate_input("Vector"):
- m[0][3]=axis[0];m[1][3]=axis[1];m[2][3]=axis[2]
- self.parameters['Matrix'] = m
- elif (operation := self.evaluate_input("Operation")) == 'SCALE':
- self.parameters["Matrix"] = Matrix.Scale(self.evaluate_input("W"), 4, Vector(self.evaluate_input("Vector")).normalized())
- else:
- raise NotImplementedError(self.evaluate_input("Operation").__repr__()+ " Operation not yet implemented.")
- self.prepared = True
- self.executed = True
- class UtilityIntToString(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Number" ,
- "Zero Padding" ,
- ]
- outputs = [
- "String" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- number = self.evaluate_input("Number")
- zeroes = self.evaluate_input("Zero Padding")
- # I'm casting to int because I want to support any number, even though the node asks for int.
- self.parameters["String"] = str(int(number)).zfill(int(zeroes))
- self.prepared = True
- self.executed = True
- class UtilityArrayGet(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Index" ,
- "OoB Behaviour" ,
- "Array" ,
- ]
- outputs = [
- "Output" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- if self.prepared == False:
- # sort the array entries
- for inp in self.inputs.values():
- inp.links.sort(key=lambda a : -a.multi_input_sort_id)
- oob = self.evaluate_input("OoB Behaviour")
- index = self.evaluate_input("Index")
- from .utilities import cap, wrap
-
- # we must assume that the array has sent the correct number of links
- if oob == 'WRAP':
- index = index % len(self.inputs['Array'].links)
- if oob == 'HOLD':
- index = cap(index, len(self.inputs['Array'].links)-1)
- # relink the connections and then kill all the links to and from the array
- from .utilities import init_connections, init_dependencies
- l = self.inputs["Array"].links[index]
- for link in self.outputs["Output"].links:
- to_node = link.to_node
- l.from_node.outputs[l.from_socket].connect(to_node, link.to_socket)
- link.die()
- init_dependencies(to_node)
- from_node=l.from_node
- for inp in self.inputs.values():
- for l in inp.links:
- l.die()
- init_connections(from_node)
- if self in from_node.hierarchy_connections:
- raise RuntimeError()
- # this is intentional because the Array Get is kind of a weird hybrid between a Utility and a Schema
- # so it should be removed from the tree when it is done. it has already dealt with the actual links.
- # however I think this is redundant. Check.
- self.hierarchy_connections, self.connections = [], []
- self.hierarchy_dependencies, self.dependencies = [], []
- self.prepared = True
- self.executed = True
- class UtilitySetBoneMatrixTail(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = {
- "Matrix" ,
- "Tail Location" ,
- }
- outputs = [
- "Result" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Matrix
- matrix = self.evaluate_input("Matrix")
- if matrix is None: matrix = Matrix.Identity(4)
- #just do this for now lol
- self.parameters["Result"] = matrix_from_head_tail(matrix.translation, self.evaluate_input("Tail Location"))
- self.prepared = True
- self.executed = True
- class UtilityPrint(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Input" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- if my_input := self.evaluate_input("Input"):
- print("Preparation phase: ", wrapWhite(self), wrapGreen(my_input))
- # else:
- # prRed("No input to print.")
- self.prepared = True
- def bExecute(self, bContext = None,):
- if my_input := self.evaluate_input("Input"):
- print("Execution phase: ", wrapWhite(self), wrapGreen(my_input))
- # else:
- # prRed("No input to print.")
- self.executed = True
- class UtilityCompare(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "A" ,
- "B" ,
- ]
- outputs = [
- "Result" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- self.parameters["Result"] = self.evaluate_input("A") == self.evaluate_input("B")
- self.prepared = True; self.executed = True
- class UtilityChoose(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Condition" ,
- "A" ,
- "B" ,
- ]
- outputs = [
- "Result" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- condition = self.evaluate_input("Condition")
- if condition:
- self.parameters["Result"] = self.evaluate_input("B")
- else:
- self.parameters["Result"] = self.evaluate_input("A")
- self.prepared = True
- self.executed = True
|