| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187 |
- #fool: should be wrColor like prColor... dumb
- def wrapRed(skk): return "\033[91m{}\033[00m".format(skk)
- def wrapGreen(skk): return "\033[92m{}\033[00m".format(skk)
- def wrapPurple(skk): return "\033[95m{}\033[00m".format(skk)
- def wrapWhite(skk): return "\033[97m{}\033[00m".format(skk)
- def wrapOrange(skk): return "\033[0;33m{}\033[00m".format(skk)
- # these should reimplement the print interface..
- def prRed(*args): print (*[wrapRed(arg) for arg in args])
- def prGreen(*args): print (*[wrapGreen(arg) for arg in args])
- def prPurple(*args): print (*[wrapPurple(arg) for arg in args])
- def prWhite(*args): print (*[wrapWhite(arg) for arg in args])
- def prOrange(*args): print (*[wrapOrange(arg) for arg in args])
- # add THIS to the top of a file for easy access:
- # from mantis.utilities import (prRed, prGreen, prPurple, prWhite,
- # prOrange,
- # wrapRed, wrapGreen, wrapPurple, wrapWhite,
- # wrapOrange,)
- # SOME PRINTS
- #DO! Figure out what the hell this does
- # then re-write it in a simpler, cleaner way
- # that ignores groups because it gets lines from a parsed tree
- # ideally I can use the seeking-lines instead of the socket/tree lines
- # since those allow the function to travel through the tree.
- # not sure if the above comment still has any place here....
- def print_lines(lines):
- printstring, string = "", ""
- cur_g = 0
- for line in lines:
- string += wrapRed("%i: " % len(line))
- for s, g in line:
- new_g = len(g) -1
- difference = new_g - cur_g
- if difference > 0:
- string = string[:-1] # get rid of leading space
- for i in range(difference):
- string += " [ "
- elif difference < 0:
- string = string[:-4]# get rid of arrow
- for i in range(abs(difference)):
- string += " ] "
- string += "-> "
- cur_g = new_g
- wrap=wrapWhite
- if (s.node.bl_idname in ['UtilitySwitch', 'UtilityDriver', 'UtilityDriverVariable']):
- wrap = wrapPurple
- elif (s.node.bl_idname in ['xFormArmatureNode', 'xFormBoneNode']):
- wrap = wrapOrange
- elif (s.node.bl_idname in ['LinkStretchTo']):
- wrap = wrapRed
- elif ('Link' in s.node.bl_idname):
- wrap = wrapGreen
- string += wrap(s.node.name + ":" + s.name) + " -> "
- string = string[:-4]
- while cur_g > 0:
- cur_g -= 1
- string += " ] "
- cur_g, difference = 0,0
- printstring +=string + "\n\n"; string = ""
- return printstring
- # why is this not printing groups in brackets?
- def print_socket_signature(sig):
- string = ""
- for i, e in enumerate(sig):
- if (e == "NONE"):
- continue
- wrap = wrapWhite
- if (i == len(sig)-2):
- wrap = wrapRed
- elif (i == len(sig) - 1):
- wrap = wrapGreen
- string+= wrap(e) + ":"
- return string[:-1]
-
- def print_node_signature(sig,):
- string = ""
- for i, e in enumerate(sig):
- if (e == "NONE"):
- continue
- wrap = wrapWhite
- if (i == len(sig)-2):
- wrap = wrapRed
- elif (i == len(sig) - 1):
- continue
- string+= wrap(e) + ":"
- return string[:-1]
- def print_parsed_node(parsed_node):
- # do: make this consistent with the above
- string = ""
- for k, v in parsed_node.items():
- if isinstance(v, dict):
- string += "%s:\n" % (k)
- for k1, v1 in v.items():
- string += " %s: %s\n" % (k1, v1)
- else:
- string += "%s: %s\n" % (k, v )
- return string
- ## SIGNATURES ##
- def get_socket_signature(line_element):
- """
- This function creates a convenient, hashable signature for
- identifying a node path.
- """
- if not line_element:
- return None
- signature, socket, tree_path = [], line_element[0], line_element[1]
- for n in tree_path:
- if hasattr(n, "name"):
- signature.append(n.name)
- else:
- signature.append("NONE")
- signature.append(socket.node.name); signature.append(socket.identifier)
- return tuple(signature)
- def tuple_of_line(line):
- # For creating a set of lines
- return tuple(tuple_of_line_element(e) for e in line)
- def tuple_of_line_element(line_element):
- return (line_element[0], tuple(line_element[1]))
- # A fuction for getting to the end of a Reroute.
- def socket_seek(start_link, links):
- link = start_link
- while(link.from_socket):
- for newlink in links:
- if link.from_socket.node.inputs:
- if newlink.to_socket == link.from_socket.node.inputs[0]:
- link=newlink; break
- else:
- break
- return link.from_socket
- # this creates fake links that have the same interface as Blender's
- # so that I can bypass Reroutes
- def clear_reroutes(links):
- from .node_container_common import DummyLink
- kept_links, rerouted_starts = [], []
- rerouted = []
- all_links = links.copy()
- while(all_links):
- link = all_links.pop()
- to_cls = link.to_socket.node.bl_idname
- from_cls = link.from_socket.node.bl_idname
- reroute_classes = ["NodeReroute"]
- if (to_cls in reroute_classes and
- from_cls in reroute_classes):
- rerouted.append(link)
- elif (to_cls in reroute_classes and not
- from_cls in reroute_classes):
- rerouted.append(link)
- elif (from_cls in reroute_classes and not
- to_cls in reroute_classes):
- rerouted_starts.append(link)
- else:
- kept_links.append(link)
- for start in rerouted_starts:
- from_socket = socket_seek(start, rerouted)
- new_link = DummyLink(from_socket=from_socket, to_socket=start.to_socket, nc_from=None, nc_to=None, multi_input_sort_id=start.multi_input_sort_id )
- kept_links.append(new_link)
- return kept_links
- def tree_from_nc(sig, base_tree):
- if (sig[0] == 'MANTIS_AUTOGENERATED'):
- sig = sig[:-2] # cut off the end part of the signature. (Why am I doing this??) # because it uses socket.name and socket.identifier
- # this will lead to totally untraceble bugs in the event of a change in how signatures are assigned
- tree = base_tree
- for i, path_item in enumerate(sig):
- if (i == 0) or (i == len(sig) - 1):
- continue
- tree = tree.nodes.get(path_item).node_tree
- return tree
-
- def get_node_prototype(sig, base_tree):
- return tree_from_nc(sig, base_tree).nodes.get( sig[-1] )
- ##################################################################################################
- # groups and changing sockets -- this is used extensively by Schema.
- ##################################################################################################
- def get_socket_maps(node):
- maps = [{}, {}]
- node_collection = ["inputs", "outputs"]
- links = ["from_socket", "to_socket"]
- for collection, map, link in zip(node_collection, maps, links):
- for sock in getattr(node, collection):
- if sock.is_linked:
- map[sock.identifier]=[ getattr(l, link) for l in sock.links ]
- else:
- map[sock.identifier]=sock.get("default_value")
- return maps
- def do_relink(node, s, map, in_out='INPUT', parent_name = ''):
- tree = node.id_data; interface_in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT'
- if hasattr(node, "node_tree"):
- tree = node.node_tree
- interface_in_out=in_out
- from bpy.types import NodeSocket
- get_string = '__extend__'
- if s: get_string = s.identifier
- if val := map.get(get_string):
- if isinstance(val, list):
- for sub_val in val:
- # this will only happen once because it assigns s, so it is safe to do in the for loop.
- if s is None:
- # prGreen("zornpt")
- name = unique_socket_name(node, sub_val, tree)
- sock_type = sub_val.bl_idname
- if parent_name:
- interface_socket = update_interface(tree.interface, name, interface_in_out, sock_type, parent_name)
- if in_out =='INPUT':
- s = node.inputs.new(sock_type, name, identifier=interface_socket.identifier)
- else:
- s = node.outputs.new(sock_type, name, identifier=interface_socket.identifier)
- if parent_name == 'Array': s.display_shape='SQUARE_DOT'
- # then move it up and delete the other link.
- # this also needs to modify the interface of the node tree.
-
-
- #
- if isinstance(sub_val, NodeSocket):
- if in_out =='INPUT':
- node.id_data.links.new(input=sub_val, output=s)
- else:
- node.id_data.links.new(input=s, output=sub_val)
- else:
- try:
- s.default_value = val
- except (AttributeError, ValueError): # must be readonly or maybe it doesn't have a d.v.
- pass
- def update_interface(interface, name, in_out, sock_type, parent_name):
- if parent_name:
- if not (interface_parent := interface.items_tree.get(parent_name)):
- interface_parent = interface.new_panel(name=parent_name)
- socket = interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
- if parent_name == 'Connection':
- in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT' # flip this make sure connections always do both
- interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
- return socket
- else:
- raise RuntimeError(wrapRed("Cannot add interface item to tree without specifying type."))
- def relink_socket_map(node, node_collection, map, item, in_out=None):
- from bpy.types import NodeSocket
- if not in_out: in_out=item.in_out
- if node.bl_idname in ['MantisSchemaGroup'] and item.parent and item.parent.name == 'Array':
- multi = False
- if in_out == 'INPUT':
- multi=True
- s = node_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier, use_multi_input=multi)
- # s.link_limit = node.schema_length TODO
- else:
- s = node_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier)
- if item.parent.name == 'Array': s.display_shape = 'SQUARE_DOT'
- do_relink(node, s, map)
- def unique_socket_name(node, other_socket, tree):
- name_stem = other_socket.bl_label; num=0
- # if hasattr(other_socket, "default_value"):
- # name_stem = type(other_socket.default_value).__name__
- for item in tree.interface.items_tree:
- if item.item_type == 'PANEL': continue
- if other_socket.is_output and item.in_out == 'INPUT': continue
- if not other_socket.is_output and item.in_out == 'OUTPUT': continue
- if name_stem in item.name: num+=1
- name = name_stem + '.' + str(num).zfill(3)
- return name
- ##############################
- # READ TREE and also Schema Solve!
- ##############################
- def init_connections(nc):
- c, hc = [], []
- for i in nc.outputs.values():
- for l in i.links:
- # if l.from_node != nc:
- # continue
- if l.is_hierarchy:
- hc.append(l.to_node)
- c.append(l.to_node)
- nc.hierarchy_connections = hc
- nc.connections = c
- def init_dependencies(nc):
- c, hc = [], []
- for i in nc.inputs.values():
- for l in i.links:
- # if l.to_node != nc:
- # continue
- if l.is_hierarchy:
- hc.append(l.from_node)
- c.append(l.from_node)
- nc.hierarchy_dependencies = hc
- nc.dependencies = c
- # schema_input_types = [
- # 'SchemaIndex',
- # 'SchemaArrayInput',
- # 'SchemaArrayInputGet',
- # 'SchemaConstInput',
- # 'SchemaIncomingConnection',
- # ]
- # schema_output_types = [
- # 'SchemaArrayOutput',
- # 'SchemaConstOutput',
- # 'SchemaOutgoingConnection',
- # ]
- from .base_definitions import from_name_filter, to_name_filter
- def init_schema_dependencies(schema, all_nc):
- schema_name = schema.signature[-1]
- all_input_nodes = []
- all_output_nodes = []
- # all_inernal_nodes = []
- # for nc in all_nc.values():
- # for t in schema_input_types:
- # if nc.signature == (*schema.signature, t):
- # all_input_nodes.append(nc)
- # for t in schema_output_types:
- # if nc.signature == (*schema.signature, t):
- # all_output_nodes.append(nc)
- # prOrange (schema.connections)
- # print (schema.hierarchy_connections)
- # prOrange (schema.dependencies)
- # prOrange (schema.hierarchy_dependencies)
- # so the challenge is to map these and check both ends
- from .base_definitions import from_name_filter, to_name_filter
- # go through the interface items then of course
- from .utilities import get_node_prototype
- np = get_node_prototype(schema.signature, schema.base_tree)
- tree = np.node_tree
- schema.dependencies = []
- schema.hierarchy_dependencies = []
- for item in tree.interface.items_tree:
- if item.item_type == 'PANEL':
- continue
- hierarchy = True
- hierarchy_reason=""
- if item.in_out == 'INPUT':
- c = schema.dependencies
- hc = schema.hierarchy_dependencies
- if item.parent and item.parent.name == 'Array':
- for t in ['SchemaArrayInput', 'SchemaArrayInputGet']:
- if (nc := all_nc.get( (*schema.signature, t) )):
- for to_link in nc.outputs[item.name].links:
- if to_link.to_socket in to_name_filter:
- # hierarchy_reason='a'
- hierarchy = False
- for from_link in schema.inputs[item.identifier].links:
- if from_link.from_socket in from_name_filter:
- hierarchy = False
- # hierarchy_reason='b'
- if from_link.from_node not in c:
- if hierarchy:
- hc.append(from_link.from_node)
- c.append(from_link.from_node)
- if item.parent and item.parent.name == 'Constant':
- if nc := all_nc.get((*schema.signature, 'SchemaConstInput')):
- for to_link in nc.outputs[item.name].links:
- if to_link.to_socket in to_name_filter:
- # hierarchy_reason='c'
- hierarchy = False
- for from_link in schema.inputs[item.identifier].links:
- if from_link.from_socket in from_name_filter:
- # hierarchy_reason='d'
- hierarchy = False
- if from_link.from_node not in c:
- if hierarchy:
- hc.append(from_link.from_node)
- c.append(from_link.from_node)
- if item.parent and item.parent.name == 'Connection':
- if nc := all_nc.get((*schema.signature, 'SchemaIncomingConnection')):
- for to_link in nc.outputs[item.name].links:
- if to_link.to_socket in to_name_filter:
- # hierarchy_reason='e'
- hierarchy = False
- for from_link in schema.inputs[item.identifier].links:
- if from_link.from_socket in from_name_filter:
- # hierarchy_reason='f'
- hierarchy = False
- if from_link.from_node not in c:
- if hierarchy:
- hc.append(from_link.from_node)
- c.append(from_link.from_node)
- # prPurple(item.in_out)
- # if hierarchy:
- # prOrange(item.name)
- # else:
- # prWhite(item.name)
- # print(hierarchy_reason)
- # else:
- # c = schema.connections
- # hc = schema.hierarchy_connections
- # if item.parent and item.parent.name == 'Array':
- # if nc := all_nc.get((*schema.signature, 'SchemaArrayOutput')):
- # for from_link in nc.inputs[item.name].links:
- # if from_link.from_socket in from_name_filter:
- # hierarchy = False
- # for to_link in schema.outputs[item.identifier].links:
- # if to_link.to_socket in to_name_filter:
- # hierarchy = False
- # if item.parent and item.parent.name == 'Constant':
- # if nc := all_nc.get((*schema.signature, 'SchemaConstOutput')):
- # for from_link in nc.inputs[item.name].links:
- # if from_link.from_socket in from_name_filter:
- # hierarchy = False
- # for to_link in schema.outputs[item.identifier].links:
- # if to_link.to_socket in to_name_filter:
- # hierarchy = False
- # if item.parent and item.parent.name == 'Connection':
- # if nc := all_nc.get((*schema.signature, 'SchemaOutgoingConnection')):
- # for from_link in nc.inputs[item.name].links:
- # if from_link.from_socket in from_name_filter:
- # hierarchy = False
- # for to_link in schema.outputs[item.identifier].links:
- # if to_link.to_socket in to_name_filter:
- # hierarchy = False
- # for nc in all_input_nodes:
- # for output in nc.outputs.values():
- # for l in output.links:
- # if l.to_socket in to_name_filter:
- # print("not hierarchy", l.to_socket)
- # else:
- # print("hierarchy", l.to_socket)
- # for inp in schema.inputs.values():
- # for l in inp.links:
- # if l.from_socket in from_name_filter:
- # print("not hierarchy", l.from_socket)
- # else:
- # print("hierarchy", l.from_socket)
-
- # we need to get dependencies and connections
- # but we can use the same method to do each
- # prPurple (schema.connections)
- # # print (schema.hierarchy_connections)
- # prPurple (schema.dependencies)
- # prPurple (schema.hierarchy_dependencies)
- # #
- def check_and_add_root(n, roots, include_non_hierarchy=False):
- # if not (hasattr(n, 'inputs')) or ( len(n.inputs) == 0):
- # roots.append(n)
- # elif (hasattr(n, 'inputs')):
- # for inp in n.inputs.values():
- # if inp.is_linked: return
- if include_non_hierarchy == True and len(n.dependencies) > 0:
- return
- elif len(n.hierarchy_dependencies) > 0:
- return
- roots.append(n)
- def get_link_in_out(link):
- from .base_definitions import replace_types
- from_name, to_name = link.from_socket.node.name, link.to_socket.node.name
- # catch special bl_idnames and bunch the connections up
- if link.from_socket.node.bl_idname in replace_types:
- from_name = link.from_socket.node.bl_idname
- if link.to_socket.node.bl_idname in replace_types:
- to_name = link.to_socket.node.bl_idname
- return from_name, to_name
- def link_node_containers(tree_path_names, link, local_nc, from_suffix='', to_suffix=''):
- dummy_types = ["DUMMY", "DUMMY_SCHEMA"]
- from_name, to_name = get_link_in_out(link)
- nc_from = local_nc.get( (*tree_path_names, from_name+from_suffix) )
- nc_to = local_nc.get( (*tree_path_names, to_name+to_suffix))
- if (nc_from and nc_to):
- from_s, to_s = link.from_socket.name, link.to_socket.name
- if nc_to.node_type in dummy_types: to_s = link.to_socket.identifier
- if nc_from.node_type in dummy_types: from_s = link.from_socket.identifier
- try:
- connection = nc_from.outputs[from_s].connect(node=nc_to, socket=to_s, sort_id=link.multi_input_sort_id)
- if connection is None:
- prWhite(f"Already connected: {from_name}:{from_s}->{to_name}:{to_s}")
- return connection
- except KeyError as e:
- prRed(f"{nc_from}:{from_s} or {nc_to}:{to_s} missing; review the connections printed below:")
- print (nc_from.outputs.keys())
- print (nc_to.inputs.keys())
- raise e
- else:
- prRed(nc_from, nc_to, (*tree_path_names, from_name+from_suffix), (*tree_path_names, to_name+to_suffix))
- # for nc in local_nc.values():
- # prOrange(nc)
- raise RuntimeError(wrapRed("Link not connected: %s -> %s in tree %s" % (from_name, to_name, tree_path_names[-1])))
-
- def get_all_dependencies(nc):
- """ Given a NC, find all dependencies for the NC as a dict of nc.signature:nc"""
- nodes = []
- can_descend = True
- check_nodes = [nc]
- while (len(check_nodes) > 0):
- node = check_nodes.pop()
- connected_nodes = node.hierarchy_dependencies.copy()
- for new_node in connected_nodes:
- if new_node in nodes: raise GraphError()
- nodes.append(new_node)
- return nodes
-
- ##################################################################################################
- # misc
- ##################################################################################################
- # this function is used a lot, so it is a good target for optimization.
- def to_mathutils_value(socket):
- if hasattr(socket, "default_value"):
- from mathutils import Matrix, Euler, Quaternion, Vector
- val = socket.default_value
- # if socket.bl_idname in [
- # 'NodeSocketVector',
- # 'NodeSocketVectorAcceleration',
- # 'NodeSocketVectorDirection',
- # 'NodeSocketVectorTranslation',
- # 'NodeSocketVectorXYZ',
- # 'NodeSocketVectorVelocity',
- # 'VectorSocket',
- # 'VectorEulerSocket',
- # 'VectorTranslationSocket',
- # 'VectorScaleSocket',
- # 'ParameterVectorSocket',]:
- # # if "Vector" in socket.bl_idname:
- # return (Vector(( val[0], val[1], val[2], )))
- # if socket.bl_idname in ['NodeSocketVectorEuler']:
- # return (Euler(( val[0], val[1], val[2])), 'XYZ',) #TODO make choice
- if socket.bl_idname in ['MatrixSocket']:
- return socket.TellValue()
- # elif socket.bl_idname in ['QuaternionSocket']:
- # return (Quaternion( (val[0], val[1], val[2], val[3],)) )
- # elif socket.bl_idname in ['QuaternionSocketAA']:
- # return (Quaternion( (val[1], val[2], val[3],), val[0], ) )
- # elif socket.bl_idname in ['BooleanThreeTupleSocket']:
- # return (val[0], val[1], val[2])
- else:
- return val
- else:
- return None
- def all_trees_in_tree(base_tree, selected=False):
- """ Recursively finds all trees referenced in a given base-tree."""
- # note that this is recursive but not by tail-end recursion
- # a while-loop is a better way to do recursion in Python.
- trees = [base_tree]
- can_descend = True
- check_trees = [base_tree]
- while (len(check_trees) > 0): # this seems innefficient, why 2 loops?
- new_trees = []
- while (len(check_trees) > 0):
- tree = check_trees.pop()
- for node in tree.nodes:
- if selected == True and node.select == False:
- continue
- if new_tree := getattr(node, "node_tree", None):
- if new_tree in trees: continue
- new_trees.append(new_tree)
- trees.append(new_tree)
- check_trees = new_trees
- return trees
- # this is a destructive operation, not a pure function or whatever. That isn't good but I don't care.
- def SugiyamaGraph(tree, iterations):
- from grandalf.graphs import Vertex, Edge, Graph, graph_core
- class defaultview(object):
- w,h = 1,1
- xz = (0,0)
-
- no_links = set()
- verts = {}
- for n in tree.nodes:
- has_links=False
- for inp in n.inputs:
- if inp.is_linked:
- has_links=True
- break
- else:
- no_links.add(n.name)
- for out in n.outputs:
- if out.is_linked:
- has_links=True
- break
- else:
- try:
- no_links.remove(n.name)
- except KeyError:
- pass
- if not has_links:
- continue
-
- v = Vertex(n.name)
- v.view = defaultview()
- v.view.xy = n.location
- v.view.h = n.height*2.5
- v.view.w = n.width*2.2
- verts[n.name] = v
-
- edges = []
- for link in tree.links:
- weight = 1 # maybe this is useful
- edges.append(Edge(verts[link.from_node.name], verts[link.to_node.name], weight) )
- graph = Graph(verts.values(), edges)
- from grandalf.layouts import SugiyamaLayout
- sug = SugiyamaLayout(graph.C[0]) # no idea what .C[0] is
- roots=[]
- for node in tree.nodes:
-
- has_links=False
- for inp in node.inputs:
- if inp.is_linked:
- has_links=True
- break
- for out in node.outputs:
- if out.is_linked:
- has_links=True
- break
- if not has_links:
- continue
-
- if len(node.inputs)==0:
- roots.append(verts[node.name])
- else:
- for inp in node.inputs:
- if inp.is_linked==True:
- break
- else:
- roots.append(verts[node.name])
-
- sug.init_all(roots=roots,)
- sug.draw(iterations)
- for v in graph.C[0].sV:
- for n in tree.nodes:
- if n.name == v.data:
- n.location.x = v.view.xy[1]
- n.location.y = v.view.xy[0]
-
- # now we can take all the input nodes and try to put them in a sensible place
- for n_name in no_links:
- n = tree.nodes.get(n_name)
- next_n = None
- next_node = None
- for output in n.outputs:
- if output.is_linked == True:
- next_node = output.links[0].to_node
- break
- # let's see if the next node
- if next_node:
- # need to find the other node in the same layer...
- other_node = None
- for s_input in next_node.inputs:
- if s_input.is_linked:
- other_node = s_input.links[0].from_node
- if other_node is n:
- continue
- else:
- break
- if other_node:
- n.location = other_node.location
- n.location.y -= other_node.height*2
- else: # we'll just position it next to the next node
- n.location = next_node.location
- n.location.x -= next_node.width*1.5
-
- ##################################################################################################
- # stuff I should probably refactor!!
- ##################################################################################################
- # what in the cuss is this horrible abomination??
- def class_for_mantis_prototype_node(prototype_node):
- """ This is a class which returns a class to instantiate for
- the given prototype node."""
- #from .node_container_classes import TellClasses
- from . import xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers
- classes = {}
- for module in [xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers]:
- for cls in module.TellClasses():
- classes[cls.__name__] = cls
- # I could probably do a string.replace() here
- # But I actually think this is a bad idea since I might not
- # want to use this name convention in the future
- # this is easy enough for now, may refactor.
- #
- # kek, turns out it was completely friggin' inconsistent already
- if prototype_node.bl_idname == 'xFormRootNode':
- return classes["xFormRoot"]
- elif prototype_node.bl_idname == 'xFormArmatureNode':
- return classes["xFormArmature"]
- elif prototype_node.bl_idname == 'xFormBoneNode':
- return classes["xFormBone"]
- elif prototype_node.bl_idname == 'xFormGeometryObject':
- return classes["xFormGeometryObject"]
- elif prototype_node.bl_idname == 'linkInherit':
- return classes["LinkInherit"]
- elif prototype_node.bl_idname == 'InputFloatNode':
- return classes["InputFloat"]
- elif prototype_node.bl_idname == 'InputVectorNode':
- return classes["InputVector"]
- elif prototype_node.bl_idname == 'InputBooleanNode':
- return classes["InputBoolean"]
- elif prototype_node.bl_idname == 'InputBooleanThreeTupleNode':
- return classes["InputBooleanThreeTuple"]
- elif prototype_node.bl_idname == 'InputRotationOrderNode':
- return classes["InputRotationOrder"]
- elif prototype_node.bl_idname == 'InputTransformSpaceNode':
- return classes["InputTransformSpace"]
- elif prototype_node.bl_idname == 'InputStringNode':
- return classes["InputString"]
- elif prototype_node.bl_idname == 'InputQuaternionNode':
- return classes["InputQuaternion"]
- elif prototype_node.bl_idname == 'InputQuaternionNodeAA':
- return classes["InputQuaternionAA"]
- elif prototype_node.bl_idname == 'InputMatrixNode':
- return classes["InputMatrix"]
- elif prototype_node.bl_idname == 'MetaRigMatrixNode':
- return classes["InputMatrix"]
- elif prototype_node.bl_idname == 'InputLayerMaskNode':
- return classes["InputLayerMask"]
- elif prototype_node.bl_idname == 'GeometryCirclePrimitive':
- return classes["CirclePrimitive"]
-
- # every node before this point is not guarenteed to follow the pattern
- # but every node not checked above does follow the pattern.
-
- try:
- return classes[ prototype_node.bl_idname ]
- except KeyError:
- # prGreen(prototype_node.bl_idname)
- # prWhite(classes.keys())
- pass
-
- if prototype_node.bl_idname in [
- "NodeReroute",
- "NodeGroupInput",
- "NodeGroupOutput",
- "MantisNodeGroup",
- "NodeFrame",
- "MantisSchemaGroup",
- ]:
- return None
-
- prRed(prototype_node.bl_idname)
- raise RuntimeError(wrapOrange("Failed to create node container for: ")+wrapRed("%s" % prototype_node.bl_idname))
- return None
- # This is really, really stupid HACK
- def gen_nc_input_for_data(socket):
- # Class List #TODO deduplicate
- from . import xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers
- classes = {}
- for module in [xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers]:
- for cls in module.TellClasses():
- classes[cls.__name__] = cls
- #
- socket_class_map = {
- "MatrixSocket" : classes["InputMatrix"],
- "xFormSocket" : None,
- "RelationshipSocket" : classes["xFormRoot"], # world in
- "DeformerSocket" : classes["xFormRoot"], # world in
- "GeometrySocket" : classes["InputExistingGeometryData"],
- "EnableSocket" : classes["InputBoolean"],
- "HideSocket" : classes["InputBoolean"],
- #
- "DriverSocket" : None,
- "DriverVariableSocket" : None,
- "FCurveSocket" : None,
- "KeyframeSocket" : None,
- # "LayerMaskInputSocket" : classes["InputLayerMask"],
- # "LayerMaskSocket" : classes["InputLayerMask"],
- "BoneCollectionSocket" : classes["InputString"],
- #
- "xFormParameterSocket" : None,
- "ParameterBoolSocket" : classes["InputBoolean"],
- "ParameterIntSocket" : classes["InputFloat"], #TODO: make an Int node for this
- "ParameterFloatSocket" : classes["InputFloat"],
- "ParameterVectorSocket" : classes["InputVector"],
- "ParameterStringSocket" : classes["InputString"],
- #
- "TransformSpaceSocket" : classes["InputTransformSpace"],
- "BooleanSocket" : classes["InputBoolean"],
- "BooleanThreeTupleSocket" : classes["InputBooleanThreeTuple"],
- "RotationOrderSocket" : classes["InputRotationOrder"],
- "QuaternionSocket" : classes["InputQuaternion"],
- "QuaternionSocketAA" : classes["InputQuaternionAA"],
- "IntSocket" : classes["InputFloat"],
- "StringSocket" : classes["InputString"],
- #
- "BoolUpdateParentNode" : classes["InputBoolean"],
- "IKChainLengthSocket" : classes["InputFloat"],
- "EnumInheritScale" : classes["InputString"],
- "EnumRotationMix" : classes["InputString"],
- "EnumRotationMixCopyTransforms" : classes["InputString"],
- "EnumMaintainVolumeStretchTo" : classes["InputString"],
- "EnumRotationStretchTo" : classes["InputString"],
- "EnumTrackAxis" : classes["InputString"],
- "EnumUpAxis" : classes["InputString"],
- "EnumLockAxis" : classes["InputString"],
- "EnumLimitMode" : classes["InputString"],
- "EnumYScaleMode" : classes["InputString"],
- "EnumXZScaleMode" : classes["InputString"],
- "EnumCurveSocket" : classes["InputString"],
- "EnumMetaRigSocket" : classes["InputString"],
- # Deformers
- "EnumSkinning" : classes["InputString"],
- #
- "FloatSocket" : classes["InputFloat"],
- "FloatFactorSocket" : classes["InputFloat"],
- "FloatPositiveSocket" : classes["InputFloat"],
- "FloatAngleSocket" : classes["InputFloat"],
- "VectorSocket" : classes["InputVector"],
- "VectorEulerSocket" : classes["InputVector"],
- "VectorTranslationSocket" : classes["InputVector"],
- "VectorScaleSocket" : classes["InputVector"],
- # Drivers
- "EnumDriverVariableType" : classes["InputString"],
- "EnumDriverVariableEvaluationSpace" : classes["InputString"],
- "EnumDriverRotationMode" : classes["InputString"],
- "EnumDriverType" : classes["InputString"],
- "EnumKeyframeInterpTypeSocket" : classes["InputString"],
- "EnumKeyframeBezierHandleTypeSocket" : classes["InputString"],
- # Math
- "MathFloatOperation" : classes["InputString"],
- "MathVectorOperation" : classes["InputString"],
- "MatrixTransformOperation" : classes["InputString"],
- # Schema
- "WildcardSocket" : None,
- }
- return socket_class_map.get(socket.bl_idname, None)
- ####################################
- # CURVE STUFF
- ####################################
- def rotate(l, n):
- if ( not ( isinstance(n, int) ) ): #print an error if n is not an int:
- raise TypeError("List slice must be an int, not float.")
- return l[n:] + l[:n]
- #from stack exchange, thanks YXD
- # this stuff could be branchless but I don't use it much TODO
- def cap(val, maxValue):
- if (val > maxValue):
- return maxValue
- return val
- def capMin(val, minValue):
- if (val < minValue):
- return minValue
- return val
- # def wrap(val, min=0, max=1):
- # raise NotImplementedError
- #wtf this doesn't do anything even remotely similar to wrap, or useful in
- # HACK BAD FIXME UNBREAK ME BAD
- # I don't understand what this function does but I am using it in multiple places?
- def wrap(val, maxValue, minValue = None):
- if (val > maxValue):
- return (-1 * ((maxValue - val) + 1))
- if ((minValue) and (val < minValue)):
- return (val + maxValue)
- return val
- #TODO clean this up
- def layerMaskCompare(mask_a, mask_b):
- compare = 0
- for a, b in zip(mask_a, mask_b):
- if (a != b):
- compare+=1
- if (compare == 0):
- return True
- return False
- def lerpVal(a, b, fac = 0.5):
- return a + ( (b-a) * fac)
- def RibbonMeshEdgeLengths(m, ribbon):
- tE = ribbon[0]; bE = ribbon[1]; c = ribbon[2]
- lengths = []
- for i in range( len( tE ) ): #tE and bE are same length
- if (c == True):
- v1NextInd = tE[wrap((i+1), len(tE) - 1)]
- else:
- v1NextInd = tE[cap((i+1) , len(tE) - 1 )]
- v1 = m.vertices[tE[i]]; v1Next = m.vertices[v1NextInd]
- if (c == True):
- v2NextInd = bE[wrap((i+1), len(bE) - 1)]
- else:
- v2NextInd = bE[cap((i+1) , len(bE) - 1 )]
- v2 = m.vertices[bE[i]]; v2Next = m.vertices[v2NextInd]
-
- v = v1.co.lerp(v2.co, 0.5); vNext = v1Next.co.lerp(v2Next.co, 0.5)
- # get the center, edges may not be straight so total length
- # of one edge may be more than the ribbon center's length
- lengths.append(( v - vNext ).length)
- return lengths
- def EnsureCurveIsRibbon(crv, defaultRadius = 0.1):
- crvRadius = 0
- if (crv.data.bevel_depth == 0):
- crvRadius = crv.data.extrude
- else: #Set ribbon from bevel depth
- crvRadius = crv.data.bevel_depth
- crv.data.bevel_depth = 0
- crv.data.extrude = crvRadius
- if (crvRadius == 0):
- crv.data.extrude = defaultRadius
- def SetRibbonData(m, ribbon):
- #maybe this could be incorporated into the DetectWireEdges function?
- #maybe I can check for closed poly curves here? under what other circumstance
- # will I find the ends of the wire have identical coordinates?
- ribbonData = []
- tE = ribbon[0].copy(); bE = ribbon[1].copy()# circle = ribbon[2]
- #
- lengths = RibbonMeshEdgeLengths(m, ribbon)
- lengths.append(0)
- totalLength = sum(lengths)
- # m.calc_normals() #calculate normals
- # it appears this has been removed.
- for i, (t, b) in enumerate(zip(tE, bE)):
- ind = wrap( (i + 1), len(tE) - 1 )
- tNext = tE[ind]; bNext = bE[ind]
- ribbonData.append( ( (t,b), (tNext, bNext), lengths[i] ) )
- #if this is a circle, the last v in vertData has a length, otherwise 0
- return ribbonData, totalLength
- def mesh_from_curve(crv, context,):
- """Utility function for converting a mesh to a curve
- which will return the correct mesh even with modifiers"""
- import bpy
- if (len(crv.modifiers) > 0):
- do_unlink = False
- if (not context.scene.collection.all_objects.get(crv.name)):
- context.collection.objects.link(crv) # i guess this forces the dg to update it?
- do_unlink = True
- dg = context.view_layer.depsgraph
- # just gonna modify it for now lol
- EnsureCurveIsRibbon(crv)
- # try:
- dg.update()
- mOb = crv.evaluated_get(dg)
- m = bpy.data.meshes.new_from_object(mOb)
- m.name=crv.data.name+'_mesh'
- if (do_unlink):
- context.collection.objects.unlink(crv)
- return m
- # except: #dg is None?? # FIX THIS BUG BUG BUG
- # print ("Warning: could not apply modifiers on curve")
- # return bpy.data.meshes.new_from_object(crv)
- else: # (ಥ﹏ಥ) why can't I just use this !
- # for now I will just do it like this
- EnsureCurveIsRibbon(crv)
- return bpy.data.meshes.new_from_object(crv)
- # def DataFromRibbon(obCrv, factorsList, context, fReport=None,):
- # # BUG
- # # no reasonable results if input is not a ribbon
- # import time
- # start = time.time()
- # """Returns a point from a u-value along a curve"""
- # rM = MeshFromCurve(obCrv, context)
- # ribbons = f_mesh.DetectRibbons(rM, fReport= fReport)
- # for ribbon in ribbons:
- # # could be improved, this will do a rotation for every ribbon
- # # if even one is a circle
- # if (ribbon[2]) == True:
- # # could be a better implementation
- # dupeCrv = obCrv.copy()
- # dupeCrv.data = obCrv.data.copy()
- # dupeCrv.data.extrude = 0
- # dupeCrv.data.bevel_depth = 0
- # wM = MeshFromCurve(dupeCrv, context)
- # wires = f_mesh.DetectWireEdges(wM)
- # bpy.data.curves.remove(dupeCrv.data) #removes the object, too
- # ribbonsNew = []
- # for ribbon, wire in zip(ribbons, wires):
- # if (ribbon[2] == True): #if it's a circle
- # rNew = f_mesh.RotateRibbonToMatchWire(ribbon, rM, wire, wM)
- # else:
- # rNew = ribbon
- # ribbonsNew.append( rNew )
- # ribbons = ribbonsNew
- # break
- # data = f_mesh.DataFromRibbon(rM, factorsList, obCrv.matrix_world, ribbons=ribbons, fReport=fReport)
- # bpy.data.meshes.remove(rM)
- # print ("time elapsed: ", time.time() - start)
- # #expects data...
- # # if ()
- # return data
- def DetectRibbon(f, bm, skipMe):
- fFirst = f.index
- cont = True
- circle = False
- tEdge, bEdge = [],[]
- while (cont == True):
- skipMe.add(f.index)
- tEdge.append (f.loops[0].vert.index) # top-left
- bEdge.append (f.loops[3].vert.index) # bottom-left
- nEdge = bm.edges.get([f.loops[1].vert, f.loops[2].vert])
- nFaces = nEdge.link_faces
- if (len(nFaces) == 1):
- cont = False
- else:
- for nFace in nFaces:
- if (nFace != f):
- f = nFace
- break
- if (f.index == fFirst):
- cont = False
- circle = True
- if (cont == False): # we've reached the end, get the last two:
- tEdge.append (f.loops[1].vert.index) # top-right
- bEdge.append (f.loops[2].vert.index) # bottom-right
- # this will create a loop for rings --
- # "the first shall be the last and the last shall be first"
- return (tEdge,bEdge,circle)
- def DetectRibbons(m, fReport = None):
- # Returns list of vertex indices belonging to ribbon mesh edges
- # NOTE: this assumes a mesh object with only ribbon meshes
- # ---DO NOT call this script with a mesh that isn't a ribbon!--- #
- import bmesh
- bm = bmesh.new()
- bm.from_mesh(m)
- mIslands, mIsland = [], []
- skipMe = set()
- bm.faces.ensure_lookup_table()
- #first, get a list of mesh islands
- for f in bm.faces:
- if (f.index in skipMe):
- continue #already done here
- checkMe = [f]
- while (len(checkMe) > 0):
- facesFound = 0
- for f in checkMe:
- if (f.index in skipMe):
- continue #already done here
- mIsland.append(f)
- skipMe.add(f.index)
- for e in f.edges:
- checkMe += e.link_faces
- if (facesFound == 0):
- #this is the last iteration
- mIslands.append(mIsland)
- checkMe, mIsland = [], []
- ribbons = []
- skipMe = set() # to store ends already checked
- for mIsl in mIslands:
- ribbon = None
- first = float('inf')
- for f in mIsl:
- if (f.index in skipMe):
- continue #already done here
- if (f.index < first):
- first = f.index
- adjF = 0
- for e in f.edges:
- adjF+= (len(e.link_faces) - 1)
- # every face other than this one is added to the list
- if (adjF == 1):
- ribbon = (DetectRibbon(f, bm, skipMe) )
- break
- if (ribbon == None):
- ribbon = (DetectRibbon(bm.faces[first], bm, skipMe) )
- ribbons.append(ribbon)
- # print (ribbons)
- return ribbons
- def data_from_ribbon_mesh(m, factorsList, mat, ribbons = None, fReport = None):
- #Note, factors list should be equal in length the the number of wires
- #Now working for multiple wires, ugly tho
- if (ribbons == None):
- ribbons = DetectRibbons(m, fReport=fReport)
- if (ribbons is None):
- if (fReport):
- fReport(type = {'ERROR'}, message="No ribbon to get data from.")
- else:
- print ("No ribbon to get data from.")
- return None
- ret = []
- for factors, ribbon in zip(factorsList, ribbons):
- points = []
- widths = []
- normals = []
- ribbonData, totalLength = SetRibbonData(m, ribbon)
- for fac in factors:
- if (fac == 0):
- data = ribbonData[0]
- curFac = 0
- elif (fac == 1):
- data = ribbonData[-1]
- curFac = 0
- else:
- targetLength = totalLength * fac
- data = ribbonData[0]
- curLength = 0
- for ( (t, b), (tNext, bNext), length,) in ribbonData:
- if (curLength >= targetLength):
- break
- curLength += length
- data = ( (t, b), (tNext, bNext), length,)
- targetLengthAtEdge = (curLength - targetLength)
- if (targetLength == 0):
- curFac = 0
- elif (targetLength == totalLength):
- curFac = 1
- else:
- try:
- curFac = 1 - (targetLengthAtEdge/ data[2]) #length
- except ZeroDivisionError:
- curFac = 0
- if (fReport):
- fReport(type = {'WARNING'}, message="Division by Zero.")
- else:
- prRed ("Division by Zero Error in evaluating data from curve.")
- t1 = m.vertices[data[0][0]]; b1 = m.vertices[data[0][1]]
- t2 = m.vertices[data[1][0]]; b2 = m.vertices[data[1][1]]
- #location
- loc1 = (t1.co).lerp(b1.co, 0.5)
- loc2 = (t2.co).lerp(b2.co, 0.5)
- #width
- w1 = (t1.co - b1.co).length/2
- w2 = (t2.co - b2.co).length/2 #radius, not diameter
- #normal
- n1 = (t1.normal).slerp(b1.normal, 0.5)
- n2 = (t1.normal).slerp(b2.normal, 0.5)
- if ((data[0][0] > data[1][0]) and (ribbon[2] == False)):
- curFac = 0
- #don't interpolate if at the end of a ribbon that isn't circular
- if ( 0 < curFac < 1):
- outPoint = loc1.lerp(loc2, curFac)
- outNorm = n1.lerp(n2, curFac)
- outWidth = w1 + ( (w2-w1) * curFac)
- elif (curFac <= 0):
- outPoint = loc1.copy()
- outNorm = n1
- outWidth = w1
- elif (curFac >= 1):
- outPoint = loc2.copy()
- outNorm = n2
- outWidth = w2
- outPoint = mat @ outPoint
- outNorm.normalize()
- points.append ( outPoint.copy() ) #copy because this is an actual vertex location
- widths.append ( outWidth )
- normals.append( outNorm )
- ret.append( (points, widths, normals) )
- return ret # this is a list of tuples containing three lists
|