| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228 | 
							
- #fool: should be wrColor like prColor... dumb
 
- def wrapRed(skk):    return "\033[91m{}\033[00m".format(skk)
 
- def wrapGreen(skk):  return "\033[92m{}\033[00m".format(skk)
 
- def wrapPurple(skk): return "\033[95m{}\033[00m".format(skk)
 
- def wrapWhite(skk):  return "\033[97m{}\033[00m".format(skk)
 
- def wrapOrange(skk):  return "\033[0;33m{}\033[00m".format(skk)
 
- # these should reimplement the print interface..
 
- def prRed(*args): print (*[wrapRed(arg) for arg in args])
 
- def prGreen(*args): print (*[wrapGreen(arg) for arg in args])
 
- def prPurple(*args): print (*[wrapPurple(arg) for arg in args])
 
- def prWhite(*args): print (*[wrapWhite(arg) for arg in args])
 
- def prOrange(*args): print (*[wrapOrange(arg) for arg in args])
 
- # add THIS to the top of a file for easy access:
 
- # from mantis.utilities import (prRed, prGreen, prPurple, prWhite,
 
- #                               prOrange,
 
- #                               wrapRed, wrapGreen, wrapPurple, wrapWhite,
 
- #                               wrapOrange,)
 
- def float_lerp(a : float, b : float, factor : float)  -> float:
 
-     return (a * (1.0 - factor)) + (b * factor)
 
- # A fuction for getting to the end of a Reroute.
 
- # TODO: this seems really inefficient!
 
- def socket_seek(start_link, links):
 
-     link = start_link
 
-     while(link.from_socket):
 
-         for newlink in links:
 
-             if link.from_socket.node.inputs:
 
-                 if link.from_node.bl_idname != 'NodeReroute':
 
-                     return link.from_socket
 
-                 if newlink.to_socket == link.from_socket.node.inputs[0]:
 
-                     link=newlink; break
 
-         else:
 
-             break
 
-     return link.from_socket
 
- # this creates fake links that have the same interface as Blender's
 
- # so that I can bypass Reroutes
 
- def clear_reroutes(links):
 
-     from .base_definitions import DummyLink
 
-     kept_links, rerouted_starts = [], []
 
-     rerouted = []
 
-     all_links = links.copy()
 
-     while(all_links):
 
-         link = all_links.pop()
 
-         to_cls = link.to_socket.node.bl_idname
 
-         from_cls = link.from_socket.node.bl_idname
 
-         reroute_classes = ["NodeReroute"]
 
-         if (to_cls in reroute_classes and
 
-             from_cls in reroute_classes):
 
-                 rerouted.append(link)
 
-         elif (to_cls in reroute_classes and not
 
-             from_cls in reroute_classes):
 
-                 rerouted.append(link)
 
-         elif (from_cls in reroute_classes and not
 
-             to_cls in reroute_classes):
 
-                 rerouted_starts.append(link)
 
-         else:
 
-             kept_links.append(link)
 
-     for start in rerouted_starts:
 
-         from_socket = socket_seek(start, rerouted)
 
-         new_link = DummyLink(from_socket=from_socket, to_socket=start.to_socket, nc_from=None, nc_to=None, multi_input_sort_id=start.multi_input_sort_id )
 
-         kept_links.append(new_link)
 
-     return kept_links
 
- def tree_from_nc(sig, base_tree):
 
-     if (sig[0] == 'MANTIS_AUTOGENERATED'):
 
-         sig = sig[:-2] # cut off the end part of the signature (because it uses socket.name and socket.identifier)
 
-         # this will lead to totally untraceble bugs in the event of a change in how signatures are assigned
 
-     tree = base_tree
 
-     for i, path_item in enumerate(sig):
 
-         if (i == 0) or (i == len(sig) - 1):
 
-             continue
 
-         tree = tree.nodes.get(path_item).node_tree
 
-     return tree
 
-     
 
- def get_node_prototype(sig, base_tree):
 
-     return tree_from_nc(sig, base_tree).nodes.get( sig[-1] )
 
- ##################################################################################################
 
- # groups and changing sockets -- this is used extensively by Schema.
 
- ##################################################################################################
 
- # this one returns None if there is an error.
 
- def get_socket_maps(node, force=False):
 
-     maps = [{}, {}]
 
-     node_collection = ["inputs", "outputs"]
 
-     links = ["from_socket", "to_socket"]
 
-     for collection, map, linked_socket in zip(node_collection, maps, links):
 
-         for sock in getattr(node, collection):
 
-             if sock.is_linked:
 
-                 other_sockets = []
 
-                 # Sort the links first (in case they are mult-input), because Blender doesn't
 
-                 links = sorted(list(sock.links), key = lambda l : l.multi_input_sort_id)
 
-                 # HACK here because Blender will crash if the socket values in the NodeReroute
 
-                 #  are mutated. Because this seems to happen in a deffered way, I can't account
 
-                 #  for it except by checking the node later...
 
-                 # TODO: The fact that I need this hack means I can probably solve this problem
 
-                 #  for all node types in a safer way, since they may also be dynamic somehow
 
-                 for l in links:
 
-                     if "from" in linked_socket and l.from_node.bl_idname == "NodeReroute":
 
-                         other_sockets.append(l.from_node)
 
-                     elif "to" in linked_socket and l.to_node.bl_idname == "NodeReroute":
 
-                         other_sockets.append(l.to_node)
 
-                     else:
 
-                         other_sockets.append(getattr(l, linked_socket))
 
-                 map[sock.identifier]= other_sockets
 
-             elif hasattr(sock, "default_value"):
 
-                 if sock.get("default_value") is not None:
 
-                     val = sock['default_value']
 
-                 elif sock.bl_idname == "EnumCurveSocket" and sock.get("default_value") is None:
 
-                     # HACK I need to add this special case because during file-load,
 
-                     #  this value is None and should not be altered until it is set once.
 
-                     continue
 
-                 elif "Enum" in sock.bl_idname and isinstance(sock.get("default_value"), int):
 
-                     continue # for string enum properties that have not yet initialized (at startup)
 
-                 elif (val := sock.default_value) is not None:
 
-                     pass
 
-                 elif not force:
 
-                     continue
 
-                 map[sock.identifier]=val
 
-             else:
 
-                 from .socket_definitions import no_default_value
 
-                 if sock.bl_idname in no_default_value:
 
-                     map[sock.identifier]=None
 
-                 else:
 
-                     raise RuntimeError(f"ERROR: Could not get socket data for socket of type: {sock.bl_idname}")
 
-     if node.name == 'Morph Target XZ 4-shape':
 
-         raise NotImplementedError
 
-     return maps
 
- # this function is completely overloaded with different purposes and code paths
 
- # TODO refactor everything that funnels into this function
 
- # make this stuff simpler.
 
- def do_relink(node, s, map, in_out='INPUT', parent_name = ''):
 
-     if not node.__class__.is_registered_node_type(): return
 
-     tree = node.id_data; interface_in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT'
 
-     if hasattr(node, "node_tree"):
 
-         tree = node.node_tree
 
-         interface_in_out=in_out
 
-     from bpy.types import NodeSocket, Node
 
-     get_string = '__extend__'
 
-     if s: get_string = s.identifier
 
-     from .base_definitions import SchemaUINode
 
-     if (hasattr(node, "node_tree") or isinstance(node, SchemaUINode)) and get_string not in map.keys():
 
-         # this happens when we are creating a new node group and need to update it from nothing.
 
-         return
 
-     val = map[get_string] # this will throw an error if the socket isn't there. Good!
 
-     if isinstance(val, list):
 
-         for sub_val in val:
 
-             # this will only happen once because it assigns s, so it is safe to do in the for loop.
 
-             if s is None:
 
-                 name = unique_socket_name(node, sub_val, tree)
 
-                 sock_type = sub_val.bl_idname
 
-                 if parent_name:
 
-                     interface_socket = update_interface(tree.interface, name, interface_in_out, sock_type, parent_name)
 
-                 if in_out =='INPUT':
 
-                     s = node.inputs.new(sock_type, name, identifier=interface_socket.identifier)
 
-                 else:
 
-                     s = node.outputs.new(sock_type, name, identifier=interface_socket.identifier)
 
-                 if parent_name == 'Array': s.display_shape='SQUARE_DOT'
 
-                 if parent_name == 'Constant': s.display_shape='CIRCLE_DOT'
 
-                 # then move it up and delete the other link.
 
-                 # this also needs to modify the interface of the node tree.
 
-             if isinstance(sub_val, NodeSocket):
 
-                 l = None
 
-                 if in_out =='INPUT':
 
-                     l = node.id_data.links.new(input=sub_val, output=s)
 
-                 else:
 
-                     l = node.id_data.links.new(input=s, output=sub_val)
 
-                 if l is None:
 
-                     raise RuntimeError("Could not create link")
 
-             elif isinstance(sub_val, Node):
 
-                 l = None
 
-                 # this happens when it is a NodeReroute
 
-                 if not s.is_output:
 
-                     l = node.id_data.links.new(input=sub_val.outputs[0], output=s)
 
-                 else:
 
-                     l = node.id_data.links.new(input=s, output=sub_val.inputs[0])
 
-                 if l is None:
 
-                     raise RuntimeError("Could not create link")
 
-             else:
 
-                 raise RuntimeError("Unhandled case in do_relink()")
 
-     elif get_string != "__extend__":
 
-         if not s.is_output:
 
-             try:
 
-                 s.default_value = val
 
-             except (AttributeError, ValueError): # must be readonly or maybe it doesn't have a d.v.
 
-                 pass
 
- def update_interface(interface, name, in_out, sock_type, parent_name):
 
-     if parent_name:
 
-         if not (interface_parent := interface.items_tree.get(parent_name)):
 
-             interface_parent = interface.new_panel(name=parent_name)
 
-         socket = interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
 
-         if parent_name == 'Connection':
 
-             in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT' # flip this make sure connections always do both
 
-             interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
 
-         return socket
 
-     else:
 
-         raise RuntimeError(wrapRed("Cannot add interface item to tree without specifying type."))
 
- #UGLY BAD REFACTOR
 
- def relink_socket_map_add_socket(node, socket_collection, item, in_out=None,):
 
-     if not in_out: in_out=item.in_out
 
-     if node.bl_idname in ['MantisSchemaGroup'] and item.parent and item.parent.name == 'Array':
 
-         multi = True if in_out == 'INPUT' else False
 
-         s = socket_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier,  use_multi_input=multi)
 
-     else:
 
-         s = socket_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier)
 
-     if item.parent.name == 'Array': s.display_shape = 'SQUARE_DOT'
 
-     elif item.parent.name == 'Constant': s.display_shape='CIRCLE_DOT'
 
-     return s
 
- # TODO REFACTOR THIS
 
- # I did this awful thing because I needed the above code
 
- # but I have provided this interface to Mantis
 
- # I did not follow the Single Responsibility Principle
 
- # I am now suffering for it, as I rightly deserve.
 
- def relink_socket_map(node, socket_collection, map, item, in_out=None,):
 
-     s = relink_socket_map_add_socket(node, socket_collection, item, in_out=None,)
 
-     do_relink(node, s, map)
 
- def unique_socket_name(node, other_socket, tree):
 
-     name_stem = other_socket.bl_label; num=0
 
-     # if hasattr(other_socket, "default_value"):
 
-     #     name_stem = type(other_socket.default_value).__name__
 
-     for item in tree.interface.items_tree:
 
-         if item.item_type == 'PANEL': continue
 
-         if other_socket.is_output and item.in_out == 'INPUT': continue
 
-         if not other_socket.is_output and item.in_out == 'OUTPUT': continue
 
-         if name_stem in item.name: num+=1
 
-     name = name_stem + '.' + str(num).zfill(3)
 
-     return name
 
- ##############################
 
- # Dealing with Objects
 
- ##############################
 
- # use this to ensure the active object is set back when changing it
 
- def preserve_active_object(func):
 
-     def wrapper(*args, **kwargs):
 
-         import bpy
 
-         original_active = bpy.context.active_object
 
-         func(*args, **kwargs)
 
-         bpy.context.view_layer.objects.active = original_active
 
-     return wrapper
 
- def switch_mode(mode='OBJECT', objects = []):
 
-     active = None
 
-     if objects:
 
-         from bpy import context, ops
 
-         active = objects[-1]
 
-         context.view_layer.objects.active = active
 
-         if (active):
 
-             with context.temp_override(**{'active_object':active, 'selected_objects':objects}):
 
-                 ops.object.mode_set(mode=mode)
 
-     return active
 
- # run this in Object mode, during bFinalize
 
- @preserve_active_object
 
- def bind_modifier_operator(modifier, operator):
 
-         # now we have to bind it
 
-         ob = modifier.id_data; print (ob.name)
 
-         ob.modifiers.active = modifier
 
-         import bpy
 
-         bpy.context.view_layer.objects.active = ob
 
-         # Context override does not do anything here... it isn't handled in the C code
 
-         # I have verified this by building Blender with print statements to debug.
 
-         # let's just make sure the target object has its modifiers disabled and update the dg
 
-         targ_attr = "target"
 
-         if hasattr(modifier, "object"): targ_attr = "object"
 
-         target = getattr(modifier, targ_attr)
 
-         for m in target.modifiers:
 
-             m.show_viewport = False
 
-         bpy.context.view_layer.depsgraph.update()
 
-         for m in target.modifiers:
 
-             m.show_viewport = True
 
-         operator(modifier=modifier.name)
 
- ##############################
 
- #  READ TREE and also Schema Solve!
 
- ##############################
 
- # TODO: refactor the following two functions, they should be one function with arguments.
 
- def init_connections(nc):
 
-     c, hc = [], []
 
-     for i in nc.outputs.values():
 
-         for l in i.links:
 
-             # if l.from_node != nc:
 
-             #     continue
 
-             if l.is_hierarchy:
 
-                 hc.append(l.to_node)
 
-             c.append(l.to_node)
 
-     nc.hierarchy_connections = hc
 
-     nc.connections = c
 
- def init_dependencies(nc):
 
-     c, hc = [], []
 
-     for i in nc.inputs.values():
 
-         for l in i.links:
 
-             # if l.to_node != nc:
 
-             #     continue
 
-             if l.is_hierarchy:
 
-                 hc.append(l.from_node)
 
-             c.append(l.from_node)
 
-     nc.hierarchy_dependencies = hc
 
-     nc.dependencies = c
 
- def schema_dependency_handle_item(schema, all_nc, item,):
 
-     hierarchy = True
 
-     from .base_definitions import from_name_filter, to_name_filter
 
-     if item.in_out == 'INPUT':
 
-         dependencies = schema.dependencies
 
-         hierarchy_dependencies = schema.hierarchy_dependencies
 
-         if item.parent and item.parent.name == 'Array':
 
-             for schema_idname in ['SchemaArrayInput', 'SchemaArrayInputGet', 'SchemaArrayInputAll']:
 
-                 if (nc := all_nc.get( (*schema.signature, schema_idname) )):
 
-                     for to_link in nc.outputs[item.name].links:
 
-                         if to_link.to_socket in to_name_filter:
 
-                             # hierarchy_reason='a'
 
-                             hierarchy = False
 
-                     for from_link in schema.inputs[item.identifier].links:
 
-                         if from_link.from_socket in from_name_filter:
 
-                             hierarchy = False
 
-                             # hierarchy_reason='b'
 
-                         if from_link.from_node not in dependencies:
 
-                             if hierarchy:
 
-                                 hierarchy_dependencies.append(from_link.from_node)
 
-                             dependencies.append(from_link.from_node)
 
-         if item.parent and item.parent.name == 'Constant':
 
-             if nc := all_nc.get((*schema.signature, 'SchemaConstInput')):
 
-                 for to_link in nc.outputs[item.name].links:
 
-                     if to_link.to_socket in to_name_filter:
 
-                         # hierarchy_reason='dependencies'
 
-                         hierarchy = False
 
-                 for from_link in schema.inputs[item.identifier].links:
 
-                     if from_link.from_socket in from_name_filter:
 
-                         # hierarchy_reason='d'
 
-                         hierarchy = False
 
-                     if from_link.from_node not in dependencies:
 
-                         if hierarchy:
 
-                             hierarchy_dependencies.append(from_link.from_node)
 
-                         dependencies.append(from_link.from_node)
 
-         if item.parent and item.parent.name == 'Connection':
 
-             if nc := all_nc.get((*schema.signature, 'SchemaIncomingConnection')):
 
-                 for to_link in nc.outputs[item.name].links:
 
-                     if to_link.to_socket in to_name_filter:
 
-                         # hierarchy_reason='e'
 
-                         hierarchy = False
 
-                 for from_link in schema.inputs[item.identifier].links:
 
-                     if from_link.from_socket in from_name_filter:
 
-                         # hierarchy_reason='f'
 
-                         hierarchy = False
 
-                     if from_link.from_node not in dependencies:
 
-                         if hierarchy:
 
-                             hierarchy_dependencies.append(from_link.from_node)
 
-                         dependencies.append(from_link.from_node)
 
- def init_schema_dependencies(schema, all_nc):
 
-     """ Initialize the dependencies for Schema, and mark them as hierarchy or non-hierarchy dependencies
 
-         Non-hierarchy dependencies are e.g. drivers and custom transforms.
 
-     """
 
-     tree = schema.prototype.node_tree
 
-     if tree is None:
 
-         raise RuntimeError(f"Cannot get dependencies for schema {schema}")
 
-     schema.dependencies = []
 
-     schema.hierarchy_dependencies = []
 
-     for l in schema.inputs["Schema Length"].links:
 
-         schema.hierarchy_dependencies.append(l.from_node)
 
-     if tree.interface:
 
-         for item in tree.interface.items_tree:
 
-             if item.item_type == 'PANEL':
 
-                 continue
 
-             schema_dependency_handle_item(schema, all_nc, item,)
 
- def check_and_add_root(n, roots, include_non_hierarchy=False):
 
-     if (include_non_hierarchy * len(n.dependencies)) > 0:
 
-         return 
 
-     elif len(n.hierarchy_dependencies) > 0:
 
-         return
 
-     roots.append(n)
 
- def get_link_in_out(link):
 
-     from .base_definitions import replace_types
 
-     from_name, to_name = link.from_socket.node.name, link.to_socket.node.name
 
-     # catch special bl_idnames and bunch the connections up
 
-     if link.from_socket.node.bl_idname in replace_types:
 
-         from_name = link.from_socket.node.bl_idname 
 
-     if link.to_socket.node.bl_idname in replace_types:
 
-         to_name = link.to_socket.node.bl_idname
 
-     return from_name, to_name
 
- def link_node_containers(tree_path_names, link, local_nc, from_suffix='', to_suffix=''):
 
-     dummy_types = ["DUMMY", "DUMMY_SCHEMA"]
 
-     from_name, to_name = get_link_in_out(link)
 
-     nc_from = local_nc.get( (*tree_path_names, from_name+from_suffix) )
 
-     nc_to = local_nc.get( (*tree_path_names, to_name+to_suffix))
 
-     if (nc_from and nc_to):
 
-         from_s, to_s = link.from_socket.name, link.to_socket.name
 
-         if nc_to.node_type in dummy_types: to_s = link.to_socket.identifier
 
-         if nc_from.node_type in dummy_types: from_s = link.from_socket.identifier
 
-         try:
 
-             connection = nc_from.outputs[from_s].connect(node=nc_to, socket=to_s, sort_id=link.multi_input_sort_id)
 
-             if connection is None:
 
-                 prWhite(f"Already connected: {from_name}:{from_s}->{to_name}:{to_s}")
 
-             return connection
 
-         except KeyError as e:
 
-             prRed(f"{nc_from}:{from_s} or {nc_to}:{to_s} missing; review the connections printed below:")
 
-             print (nc_from.outputs.keys())
 
-             print (nc_to.inputs.keys())
 
-             raise e
 
-     else:
 
-         prRed(nc_from, nc_to, (*tree_path_names, from_name+from_suffix), (*tree_path_names, to_name+to_suffix))
 
-         raise RuntimeError(wrapRed("Link not connected: %s -> %s in tree %s" % (from_name, to_name, tree_path_names[-1])))
 
-     
 
- def get_all_dependencies(nc):
 
-     from .base_definitions import GraphError
 
-     """ find all dependencies for a mantis node"""
 
-     nodes = []
 
-     check_nodes = [nc]
 
-     nodes_checked = set()
 
-     while (len(check_nodes) > 0):
 
-         node = check_nodes.pop()
 
-         nodes_checked.add (node)
 
-         connected_nodes = node.hierarchy_dependencies
 
-         for new_node in connected_nodes:
 
-             if new_node in nodes:
 
-                 continue
 
-             nodes.append(new_node)
 
-             if new_node not in nodes_checked:
 
-                 check_nodes.append(new_node)
 
-     return nodes
 
-                 
 
- def get_all_nodes_of_type(base_tree, bl_idname):
 
-     nodes = []
 
-     check_nodes = list(base_tree.nodes)
 
-     while (len(check_nodes) > 0):
 
-         node = check_nodes.pop()
 
-         if node.bl_idname in bl_idname:
 
-             nodes.append(node)
 
-         if hasattr(node, "node_tree"):
 
-             check_nodes.extend(list(node.node_tree.nodes))
 
-     return nodes
 
- def trace_all_nodes_from_root(root, nodes):
 
-     from .base_definitions import GraphError
 
-     """ find all dependencies for a mantis node"""
 
-     nodes.add(root); check_nodes = [root]
 
-     nodes_checked = set()
 
-     while (len(check_nodes) > 0):
 
-         node = check_nodes.pop(); nodes_checked.add (node)
 
-         connected_nodes = []
 
-         for output in node.outputs:
 
-             for l in output.links:
 
-                 if l.to_node not in nodes:
 
-                     connected_nodes.append(l.to_node)
 
-         for new_node in connected_nodes:
 
-             nodes.add(new_node)
 
-             if new_node not in nodes_checked:
 
-                 check_nodes.append(new_node)
 
-     return nodes
 
-             
 
- ##################################################################################################
 
- # misc
 
- ##################################################################################################
 
- # TODO: get the matrix to return a mathutils.Matrix so I don't need a function call here
 
- def to_mathutils_value(socket):
 
-     if hasattr(socket, "default_value"):
 
-         val = socket.default_value
 
-         if socket.bl_idname in ['MatrixSocket']:
 
-             return socket.TellValue()
 
-         else:
 
-             return val
 
-     else:
 
-         return None
 
- def all_trees_in_tree(base_tree, selected=False):
 
-     """ Recursively finds all trees referenced in a given base-tree."""
 
-     # note that this is recursive but not by tail-end recursion
 
-     # a while-loop is a better way to do recursion in Python.
 
-     trees = [base_tree]
 
-     can_descend = True
 
-     check_trees = [base_tree]
 
-     while (len(check_trees) > 0): # this seems innefficient, why 2 loops?
 
-         new_trees = []
 
-         while (len(check_trees) > 0):
 
-             tree = check_trees.pop()
 
-             for node in tree.nodes:
 
-                 if selected == True and node.select == False:
 
-                     continue
 
-                 if new_tree := getattr(node, "node_tree", None):
 
-                     if new_tree in trees: continue 
 
-                     new_trees.append(new_tree)
 
-                     trees.append(new_tree)
 
-         check_trees = new_trees
 
-     return trees
 
- # this is a destructive operation, not a pure function or whatever. That isn't good but I don't care.
 
- def SugiyamaGraph(tree, iterations):
 
-         from grandalf.graphs import Vertex, Edge, Graph, graph_core
 
-         class defaultview(object):
 
-             w,h = 1,1
 
-             xz = (0,0)
 
-         
 
-         graph = Graph()
 
-         no_links = set()
 
-         verts = {}
 
-         for n in tree.nodes:
 
-             if n.select == True:
 
-                 v = Vertex(n.name)
 
-                 v.view = defaultview()
 
-                 v.view.xy = n.location
 
-                 v.view.h = n.height*2.5
 
-                 v.view.w = n.width*2.2
 
-                 verts[n.name] = v
 
-                 no_links.add(n.name)
 
-                 graph.add_vertex(v)
 
-             n.select=False
 
-             
 
-         edges = []
 
-         inverted_edges=[]
 
-         not_a_root = set()
 
-         for link in tree.links:
 
-             if (link.from_node.name not in verts.keys()) or (link.to_node.name not in verts.keys()):
 
-                 continue # problem??
 
-             weight = 1 # maybe this is useful
 
-             not_a_root.add(link.to_node.name) # if it has a edge-input it is not a root.
 
-             e = Edge(verts[link.from_node.name], verts[link.to_node.name], weight)
 
-             graph.add_edge(e)
 
-             edges.append(e )
 
-             if link.is_valid == False:
 
-                 inverted_edges.append(e)
 
-             if link.from_node.name in no_links:
 
-                 no_links.remove(link.from_node.name)
 
-             if link.to_node.name in no_links:
 
-                 no_links.remove(link.to_node.name)
 
-         try:
 
-             from grandalf.layouts import SugiyamaLayout
 
-             # .C[0] is the first "graph core" that contains a connected graph.
 
-             sug = SugiyamaLayout(graph.C[0]) 
 
-             sug.init_all()
 
-             sug.draw(iterations)
 
-             # Digco is good for small graphs.
 
-             # from grandalf.layouts import DigcoLayout
 
-             # dco = DigcoLayout(graph.C[0])
 
-             # dco.init_all()
 
-             # dco.draw(iterations)
 
-         except KeyboardInterrupt:
 
-             pass # just use what it has calculated so far, I guess
 
-         for v in graph.C[0].sV:
 
-             for n in tree.nodes:
 
-                 if n.name == v.data:
 
-                     n.location.x = v.view.xy[1]
 
-                     n.location.y = v.view.xy[0]
 
-                     n.select = True
 
-         
 
-         # now we can take all the input nodes and try to put them in a sensible place
 
-         # not sure why but this absolutely does not do anything
 
-         for n_name in no_links:
 
-             n = tree.nodes.get(n_name)
 
-             next_node = None
 
-             for output in n.outputs:
 
-                 if output.is_linked == True:
 
-                     next_node = output.links[0].to_node
 
-                     break
 
-             # let's see if the next node
 
-             if next_node:
 
-                 # need to find the other node in the same layer...
 
-                 other_node = None
 
-                 for s_input in next_node.inputs:
 
-                     if s_input.is_linked:
 
-                         other_node = s_input.links[0].from_node
 
-                         if other_node is n:
 
-                             continue
 
-                         else:
 
-                             break
 
-                 if other_node:
 
-                     n.location = other_node.location
 
-                     n.location.y -= other_node.height*2
 
-                 else: # we'll just position it next to the next node
 
-                     n.location = next_node.location
 
-                     n.location.x -= next_node.width*1.5
 
-         
 
- def project_point_to_plane(point, origin, normal):
 
-     return point - normal.dot(point- origin)*normal
 
- ##################################################################################################
 
- # stuff I should probably refactor!!
 
- ##################################################################################################
 
- # This is really, really stupid way to do this
 
- def gen_nc_input_for_data(socket):
 
-     # Class List #TODO deduplicate
 
-     from . import xForm_containers, link_containers, misc_nodes, primitives_containers, deformer_containers, math_containers, schema_containers
 
-     from .internal_containers import NoOpNode
 
-     classes = {}
 
-     for module in [xForm_containers, link_containers, misc_nodes, primitives_containers, deformer_containers, math_containers, schema_containers]:
 
-         for cls in module.TellClasses():
 
-             classes[cls.__name__] = cls
 
-     #
 
-     socket_class_map = {
 
-                         "MatrixSocket"                         : classes["InputMatrix"],
 
-                         "xFormSocket"                          : None,
 
-                         "RelationshipSocket"                   : NoOpNode,
 
-                         "DeformerSocket"                       : NoOpNode,
 
-                         "GeometrySocket"                       : classes["InputExistingGeometryData"],
 
-                         "EnableSocket"                         : classes["InputBoolean"],
 
-                         "HideSocket"                           : classes["InputBoolean"],
 
-                         #
 
-                         "DriverSocket"                         : None,
 
-                         "DriverVariableSocket"                 : None, 
 
-                         "FCurveSocket"                         : None, 
 
-                         "KeyframeSocket"                       : None,
 
-                         "BoneCollectionSocket"                 : classes["InputString"],
 
-                         #
 
-                         "xFormParameterSocket"                 : None,
 
-                         "ParameterBoolSocket"                  : classes["InputBoolean"],
 
-                         "ParameterIntSocket"                   : classes["InputFloat"],  #TODO: make an Int node for this
 
-                         "ParameterFloatSocket"                 : classes["InputFloat"],
 
-                         "ParameterVectorSocket"                : classes["InputVector"],
 
-                         "ParameterStringSocket"                : classes["InputString"],
 
-                         #
 
-                         "TransformSpaceSocket"                 : classes["InputTransformSpace"],
 
-                         "BooleanSocket"                        : classes["InputBoolean"],
 
-                         "BooleanThreeTupleSocket"              : classes["InputBooleanThreeTuple"],
 
-                         "RotationOrderSocket"                  : classes["InputRotationOrder"],
 
-                         "QuaternionSocket"                     : None,
 
-                         "QuaternionSocketAA"                   : None,
 
-                         "UnsignedIntSocket"                    : classes["InputFloat"],
 
-                         "IntSocket"                            : classes["InputFloat"],
 
-                         "StringSocket"                         : classes["InputString"],
 
-                         #
 
-                         "BoolUpdateParentNode"                 : classes["InputBoolean"],
 
-                         "IKChainLengthSocket"                  : classes["InputFloat"],
 
-                         "EnumInheritScale"                     : classes["InputString"],
 
-                         "EnumRotationMix"                      : classes["InputString"],
 
-                         "EnumRotationMixCopyTransforms"        : classes["InputString"],
 
-                         "EnumMaintainVolumeStretchTo"          : classes["InputString"],
 
-                         "EnumRotationStretchTo"                : classes["InputString"],
 
-                         "EnumTrackAxis"                        : classes["InputString"],
 
-                         "EnumUpAxis"                           : classes["InputString"],
 
-                         "EnumLockAxis"                         : classes["InputString"],
 
-                         "EnumLimitMode"                        : classes["InputString"],
 
-                         "EnumYScaleMode"                       : classes["InputString"],
 
-                         "EnumXZScaleMode"                      : classes["InputString"],
 
-                         "EnumCurveSocket"                      : classes["InputString"],
 
-                         "EnumMetaRigSocket"                    : classes["InputString"],
 
-                         # Deformers
 
-                         "EnumSkinning"                         : classes["InputString"],
 
-                         #
 
-                         "FloatSocket"                          : classes["InputFloat"],
 
-                         "FloatFactorSocket"                    : classes["InputFloat"],
 
-                         "FloatPositiveSocket"                  : classes["InputFloat"],
 
-                         "FloatAngleSocket"                     : classes["InputFloat"],
 
-                         "VectorSocket"                         : classes["InputVector"],
 
-                         "VectorEulerSocket"                    : classes["InputVector"],
 
-                         "VectorTranslationSocket"              : classes["InputVector"],
 
-                         "VectorScaleSocket"                    : classes["InputVector"],
 
-                         # Drivers             
 
-                         "EnumDriverVariableType"               : classes["InputString"],
 
-                         "EnumDriverVariableEvaluationSpace"    : classes["InputString"],
 
-                         "EnumDriverRotationMode"               : classes["InputString"],
 
-                         "EnumDriverType"                       : classes["InputString"],
 
-                         "EnumKeyframeInterpTypeSocket"         : classes["InputString"],
 
-                         "EnumKeyframeBezierHandleTypeSocket"   : classes["InputString"],
 
-                         # Math
 
-                         "MathFloatOperation"                   : classes["InputString"],
 
-                         "MathVectorOperation"                  : classes["InputString"],
 
-                         "MatrixTransformOperation"             : classes["InputString"],
 
-                         # Schema
 
-                         "WildcardSocket"                       : None,
 
-                        }
 
-     return socket_class_map.get(socket.bl_idname, None)
 
- ####################################
 
- # CURVE STUFF
 
- ####################################
 
- def make_perpendicular(v1, v2):
 
-     from .base_definitions import FLOAT_EPSILON
 
-     if (v1.length_squared < FLOAT_EPSILON) or (v2.length_squared < FLOAT_EPSILON):
 
-         raise RuntimeError("Cannot generate perpendicular vetor for zero-length vector")
 
-     projected = (v2.dot(v1) / v1.dot(v1)) * v1
 
-     perpendicular = v2 - projected
 
-     return perpendicular
 
- # this stuff could be branchless but I don't use it much TODO
 
- def cap(val, maxValue):
 
-     if (val > maxValue):
 
-         return maxValue
 
-     return val
 
- def capMin(val, minValue):
 
-     if (val < minValue):
 
-         return minValue
 
-     return val
 
- def wrap(min : float, max : float, value: float) -> float:
 
-     range = max-min; remainder = value % range
 
-     if remainder > max: return min + remainder-max
 
-     else: return remainder
 
- def lerpVal(a, b, fac = 0.5):
 
-     return a + ( (b-a) * fac)
 
- #wtf this doesn't do anything even remotely similar to wrap
 
- # HACK BAD FIXME UNBREAK ME BAD
 
- # I don't understand what this function does but I am using it in multiple places?
 
- def old_bad_wrap_that_should_be_refactored(val, maxValue, minValue = None):
 
-     if (val > maxValue):
 
-         return (-1 * ((maxValue - val) + 1))
 
-     if ((minValue) and (val < minValue)):
 
-         return (val + maxValue)
 
-     return val
 
-     #TODO clean this up
 
- def extract_spline_suffix(spline_index):
 
-     return ".spline."+str(spline_index).zfill(3)+".extracted"
 
- def do_extract_spline(data, spline):
 
-     remove_me = []
 
-     for other_spline in data.splines:
 
-         if other_spline != spline: remove_me.append(other_spline)
 
-     while remove_me: data.splines.remove(remove_me.pop())
 
- def extract_spline(curve, spline_index):
 
-     """ Given a curve object and spline index, returns a new object
 
-         containing only the selcted spline. The new object is bound to
 
-         the original curve.
 
-     """
 
-     if len(curve.data.splines) == 1:
 
-         return curve # nothing to do here.
 
-     spline_suffix = extract_spline_suffix(spline_index)
 
-     from bpy import data
 
-     if (new_ob := data.objects.get(curve.name+spline_suffix)) is None:
 
-         new_ob=curve.copy(); new_ob.name=curve.name+spline_suffix
 
-     # if the data exists, it is probably stale, so delete it and start over.
 
-     if (old_data := data.objects.get(curve.data.name+spline_suffix)) is not None:
 
-         data.curves.remove(old_data)
 
-     new_data=curve.data.copy(); new_data.name=curve.data.name+spline_suffix
 
-     new_ob.data = new_data
 
-     # do not check for index error here, it is the calling function's responsibility
 
-     do_extract_spline(new_data, new_data.splines[spline_index])
 
-     return new_ob
 
- def bind_extracted_spline_to_curve(new_ob, curve):
 
-     # Set up a relationship between the new object and the old object
 
-     # now, weirdly enough - we can't use parenting very easily because Blender
 
-     # defines the parent on a curve relative to the evaluated path animation
 
-     # Setting the inverse matrix is too much work. Use Copy Transforms instead.
 
-     from .xForm_containers import reset_object_data
 
-     reset_object_data(new_ob)
 
-     c = new_ob.constraints.new("COPY_TRANSFORMS"); c.target=curve
 
-     new_ob.parent=curve
 
-     return new_ob
 
- def get_extracted_spline_object(proto_curve, spline_index, mContext):
 
-     # we're storing it separately like this to ensure all nodes use the same
 
-     #   object if they extract the same spline for use by Mantis.
 
-     # this should be transparent to the user since it is working around a
 
-     #   a limitation in Blender.
 
-     extracted_spline_name = proto_curve.name+extract_spline_suffix(spline_index)
 
-     if curve := mContext.b_objects.get(extracted_spline_name):
 
-         return curve
 
-     else:
 
-         curve = extract_spline(proto_curve, spline_index)
 
-         if curve.name != proto_curve.name: # if there is only one spline, no
 
-             bind_extracted_spline_to_curve(curve, proto_curve)# dupe is created.
 
-         mContext.b_objects[extracted_spline_name] = curve
 
-         return curve
 
- def nurbs_copy_bez_spline(curve, bez_spline, do_setup=True):
 
-     other_spline= curve.data.splines.new('NURBS')
 
-     other_spline.use_endpoint_u=True
 
-     other_spline.use_bezier_u=True
 
-     bez_pts = bez_spline.bezier_points
 
-     bez_data=[]
 
-     for i, bez_pt in enumerate(bez_pts):
 
-         if i > 0:
 
-             bez_data.append(bez_pt.handle_left.copy())
 
-         bez_data.append(bez_pt.co.copy())
 
-         if i != len(bez_pts)-1:
 
-             bez_data.append(bez_pt.handle_right.copy())
 
-     other_spline.points.add(len(bez_data)-1)
 
-     for i, pt in enumerate(bez_data):
 
-         other_spline.points[i].co=(*pt,1.0) # add the W value here
 
-     if do_setup: # do the stuff that makes it behave the same as a bez spline
 
-         other_spline.use_endpoint_u = True; other_spline.use_bezier_u = True
 
-         other_spline.order_u=4 # set to 1 for poly
 
-     return other_spline
 
- def RibbonMeshEdgeLengths(m, ribbon):
 
-     tE = ribbon[0]; bE = ribbon[1]; c = ribbon[2]
 
-     lengths = []
 
-     for i in range( len( tE ) ): #tE and bE are same length
 
-         if (c == True):
 
-             v1NextInd = tE[old_bad_wrap_that_should_be_refactored((i+1), len(tE) - 1)]
 
-         else:
 
-             v1NextInd = tE[cap((i+1) , len(tE) - 1 )]
 
-         v1 = m.vertices[tE[i]]; v1Next = m.vertices[v1NextInd]
 
-         if (c == True):
 
-             v2NextInd = bE[old_bad_wrap_that_should_be_refactored((i+1), len(bE) - 1)]
 
-         else:
 
-             v2NextInd = bE[cap((i+1) , len(bE) - 1 )]
 
-         v2 = m.vertices[bE[i]]; v2Next = m.vertices[v2NextInd]
 
-         
 
-         v = v1.co.lerp(v2.co, 0.5); vNext = v1Next.co.lerp(v2Next.co, 0.5)
 
-         # get the center, edges may not be straight so total length 
 
-         #  of one edge may be more than the ribbon center's length
 
-         lengths.append(( v - vNext ).length)
 
-     return lengths
 
- def EnsureCurveIsRibbon(crv, defaultRadius = 0.1):
 
-     from .base_definitions import FLOAT_EPSILON
 
-     crvRadius = 0
 
-     crv.data.offset = 0
 
-     if (crv.data.bevel_depth < FLOAT_EPSILON):
 
-         crvRadius = crv.data.extrude
 
-     else: #Set ribbon from bevel depth
 
-         crvRadius = crv.data.bevel_depth
 
-         crv.data.bevel_depth = 0
 
-         crv.data.extrude = crvRadius
 
-     if (crvRadius < FLOAT_EPSILON):
 
-         crv.data.extrude = defaultRadius
 
- def SetRibbonData(m, ribbon):
 
-     #maybe this could be incorporated into the DetectWireEdges function?
 
-     #maybe I can check for closed poly curves here? under what other circumstance
 
-     # will I find the ends of the wire have identical coordinates?
 
-     ribbonData = []
 
-     tE = ribbon[0].copy(); bE = ribbon[1].copy()# circle = ribbon[2]
 
-     #
 
-     lengths = RibbonMeshEdgeLengths(m, ribbon)
 
-     lengths.append(0)
 
-     totalLength = sum(lengths)
 
-     # m.calc_normals() #calculate normals
 
-     # it appears this has been removed.
 
-     for i, (t, b) in enumerate(zip(tE, bE)):
 
-         ind = old_bad_wrap_that_should_be_refactored( (i + 1), len(tE) - 1 )
 
-         tNext = tE[ind]; bNext = bE[ind]
 
-         ribbonData.append(  ( (t,b), (tNext, bNext), lengths[i] ) )
 
-         #if this is a circle, the last v in vertData has a length, otherwise 0
 
-     return ribbonData, totalLength
 
- def WireMeshEdgeLengths(m, wire):
 
-     circle = False
 
-     vIndex = wire.copy()
 
-     for e in m.edges:
 
-         if ((e.vertices[0] == vIndex[-1]) and (e.vertices[1] == vIndex[0])):
 
-             #this checks for an edge between the first and last vertex in the wire
 
-             circle = True
 
-             break
 
-     lengths = []
 
-     for i in range(len(vIndex)):
 
-         v = m.vertices[vIndex[i]]
 
-         if (circle == True):
 
-             vNextInd = vIndex[old_bad_wrap_that_should_be_refactored((i+1), len(vIndex) - 1)]
 
-         else:
 
-             vNextInd = vIndex[cap((i+1), len(vIndex) - 1 )]
 
-         vNext = m.vertices[vNextInd]
 
-         lengths.append(( v.co - vNext.co ).length)
 
-     #if this is a circular wire mesh, this should wrap instead of cap
 
-     return lengths
 
- def GetDataFromWire(m, wire):
 
-     vertData = []
 
-     vIndex = wire.copy()
 
-     lengths = WireMeshEdgeLengths(m, wire)
 
-     lengths.append(0)
 
-     totalLength = sum(lengths)
 
-     for i, vInd in enumerate(vIndex):
 
-         #-1 to avoid IndexError
 
-         vNext = vIndex[ (old_bad_wrap_that_should_be_refactored(i+1, len(vIndex) - 1)) ]
 
-         vertData.append((vInd, vNext, lengths[i]))
 
-     #if this is a circle, the last v in vertData has a length, otherwise 0
 
-     return vertData, totalLength
 
- def DetectWireEdges(mesh):
 
-     # Returns a list of vertex indices belonging to wire meshes
 
-     # NOTE: this assumes a mesh object with only wire meshes
 
-     ret = []
 
-     import bmesh
 
-     bm = bmesh.new()
 
-     try:
 
-         bm.from_mesh(mesh)
 
-         ends = []
 
-         for v in bm.verts:
 
-             if (len(v.link_edges) == 1):
 
-                 ends.append(v.index)
 
-         for e in bm.edges:
 
-             assert (e.is_wire == True),"This function can only run on wire meshes"
 
-             if (e.verts[1].index - e.verts[0].index != 1):
 
-                 ends.append(e.verts[1].index)
 
-                 ends.append(e.verts[0].index)
 
-         for i in range(len(ends)//2): # // is floor division
 
-             beg = ends[i*2]
 
-             end = ends[(i*2)+1]
 
-             indices = [(j + beg) for j in range ((end - beg) + 1)]
 
-             ret.append(indices)
 
-     finally:
 
-         bm.free()
 
-         return ret
 
- def FindNearestPointOnWireMesh(m, pointsList):
 
-     from mathutils import Vector
 
-     from mathutils.geometry import intersect_point_line
 
-     from math import sqrt
 
-     wires = DetectWireEdges(m)
 
-     ret = []
 
-     # prevFactor = None
 
-     for wire, points in zip(wires, pointsList):
 
-         vertData, total_length = GetDataFromWire(m, wire)
 
-         factorsOut = []
 
-         for p in points:
 
-             prevDist = float('inf')
 
-             curDist  = float('inf')
 
-             v1 = None
 
-             v2 = None
 
-             for i in range(len(vertData) - 1):
 
-                 #but it shouldn't check the last one
 
-                 if (p == m.vertices[i].co):
 
-                     v1 = vertData[i]
 
-                     v2 = vertData[i+1]
 
-                     offset = 0
 
-                     break
 
-                 else:
 
-                     curDist = ( ((m.vertices[vertData[i][0]].co - p).length) +
 
-                                 ((m.vertices[vertData[i][1]].co - p).length) )/2
 
-                 if (curDist < prevDist):
 
-                     v1 = vertData[i]
 
-                     v2 = vertData[i+1]
 
-                     prevDist = curDist
 
-                     offset = intersect_point_line(p, m.vertices[v1[0]].co, 
 
-                                                      m.vertices[v2[0]].co)[1]
 
-             if (offset < 0):
 
-                 offset = 0
 
-             elif (offset > 1):
 
-                 offset = 1
 
-             # Assume the vertices are in order
 
-             v1Length = 0
 
-             v2Length = v2[2]
 
-             for i in range(v1[0]):
 
-                 v1Length += vertData[i][2]
 
-             factor = ((offset * (v2Length)) + v1Length )/total_length
 
-             factor = wrap(0, 1, factor) # doesn't hurt to wrap it if it's over 1 or less than 0
 
-             factorsOut.append(factor)
 
-         ret.append( factorsOut )
 
-     return ret
 
- def mesh_from_curve(crv, context, ribbon=True):
 
-     """Utility function for converting a mesh to a curve
 
-        which will return the correct mesh even with modifiers"""
 
-     import bpy
 
-     m = None
 
-     bevel = crv.data.bevel_depth
 
-     extrude = crv.data.extrude
 
-     offset = crv.data.offset
 
-     try:
 
-         if (len(crv.modifiers) > 0):
 
-             do_unlink = False
 
-             if (not context.scene.collection.all_objects.get(crv.name)):
 
-                 context.collection.objects.link(crv) # i guess this forces the dg to update it?
 
-                 do_unlink = True
 
-             dg = context.view_layer.depsgraph
 
-             # just gonna modify it for now lol
 
-             if ribbon:
 
-                 EnsureCurveIsRibbon(crv)
 
-             else:
 
-                 crv.data.bevel_depth=0
 
-                 crv.data.extrude=0
 
-                 crv.data.offset=0
 
-             # try:
 
-             dg.update()
 
-             mOb = crv.evaluated_get(dg)
 
-             m = bpy.data.meshes.new_from_object(mOb)
 
-             m.name=crv.data.name+'_mesh'
 
-             if (do_unlink):
 
-                 context.collection.objects.unlink(crv)
 
-         else: # (ಥ﹏ಥ) why can't I just use this !
 
-             # for now I will just do it like this
 
-             if ribbon:
 
-                 EnsureCurveIsRibbon(crv)
 
-             else:
 
-                 crv.data.bevel_depth=0
 
-                 crv.data.extrude=0
 
-                 crv.data.offset=0
 
-             m = bpy.data.meshes.new_from_object(crv)
 
-     finally:
 
-         crv.data.bevel_depth = bevel
 
-         crv.data.extrude = extrude
 
-         crv.data.offset = offset
 
-     return m
 
- def DetectRibbon(f, bm, skipMe):
 
-     fFirst = f.index
 
-     cont = True
 
-     circle = False
 
-     tEdge, bEdge = [],[]
 
-     while (cont == True):
 
-         skipMe.add(f.index)
 
-         tEdge.append (f.loops[0].vert.index) # top-left
 
-         bEdge.append (f.loops[3].vert.index) # bottom-left
 
-         nEdge = bm.edges.get([f.loops[1].vert, f.loops[2].vert])
 
-         nFaces = nEdge.link_faces
 
-         if (len(nFaces) == 1): 
 
-             cont = False
 
-         else:
 
-             for nFace in nFaces:
 
-                 if (nFace != f):
 
-                     f = nFace
 
-                     break
 
-             if (f.index == fFirst):
 
-                 cont = False
 
-                 circle = True
 
-         if (cont == False): # we've reached the end, get the last two:
 
-             tEdge.append (f.loops[1].vert.index) # top-right
 
-             bEdge.append (f.loops[2].vert.index) # bottom-right
 
-             # this will create a loop for rings -- 
 
-             #  "the first shall be the last and the last shall be first"
 
-     return (tEdge,bEdge,circle)
 
- def DetectRibbons(m, fReport = None):
 
-     # Returns list of vertex indices belonging to ribbon mesh edges
 
-     # NOTE: this assumes a mesh object with only ribbon meshes
 
-     # ---DO NOT call this script with a mesh that isn't a ribbon!--- #
 
-     import bmesh
 
-     bm = bmesh.new()
 
-     bm.from_mesh(m)
 
-     mIslands, mIsland = [], []
 
-     skipMe = set()
 
-     bm.faces.ensure_lookup_table()
 
-     #first, get a list of mesh islands
 
-     for f in bm.faces:
 
-         if (f.index in skipMe):
 
-             continue #already done here
 
-         checkMe = [f]
 
-         while (len(checkMe) > 0):
 
-             facesFound = 0
 
-             for f in checkMe:
 
-                 if (f.index in skipMe):
 
-                     continue #already done here
 
-                 mIsland.append(f)
 
-                 skipMe.add(f.index)
 
-                 for e in f.edges:
 
-                     checkMe += e.link_faces
 
-             if (facesFound == 0):
 
-                 #this is the last iteration
 
-                 mIslands.append(mIsland)
 
-                 checkMe, mIsland = [], []
 
-     ribbons = []
 
-     skipMe = set() # to store ends already checked
 
-     for mIsl in mIslands:
 
-         ribbon = None
 
-         first = float('inf')
 
-         for f in mIsl:
 
-             if (f.index in skipMe):
 
-                 continue #already done here
 
-             if (f.index < first):
 
-                 first = f.index
 
-             adjF = 0
 
-             for e in f.edges:
 
-                 adjF+= (len(e.link_faces) - 1)
 
-                 # every face other than this one is added to the list
 
-             if (adjF == 1):
 
-                 ribbon = (DetectRibbon(f, bm, skipMe) )
 
-                 break
 
-         if (ribbon == None):
 
-             ribbon = (DetectRibbon(bm.faces[first], bm, skipMe) )
 
-         ribbons.append(ribbon)
 
-     # print (ribbons)
 
-     return ribbons
 
- def data_from_ribbon_mesh(m, factorsList, mat, ribbons = None, fReport = None):
 
-     #Note, factors list should be equal in length the the number of wires
 
-     #Now working for multiple wires, ugly tho
 
-     if (ribbons == None):
 
-         ribbons = DetectRibbons(m, fReport=fReport)
 
-         if (ribbons is None):
 
-             if (fReport):
 
-                 fReport(type = {'ERROR'}, message="No ribbon to get data from.")
 
-             else:  
 
-                 print ("No ribbon to get data from.")
 
-             return None
 
-     ret = []
 
-     for factors, ribbon in zip(factorsList, ribbons):
 
-         points  = []
 
-         widths  = []
 
-         normals = []
 
-         ribbonData, totalLength = SetRibbonData(m, ribbon)
 
-         for fac in factors:
 
-             if (fac == 0):
 
-                 data = ribbonData[0]
 
-                 curFac = 0
 
-             elif (fac == 1):
 
-                 data = ribbonData[-1]
 
-                 curFac = 0
 
-             else:
 
-                 targetLength = totalLength * fac
 
-                 data = ribbonData[0]
 
-                 curLength = 0
 
-                 for ( (t, b), (tNext, bNext), length,) in ribbonData:
 
-                     if (curLength >= targetLength):
 
-                         break
 
-                     curLength += length
 
-                     data = ( (t, b), (tNext, bNext), length,)
 
-                 targetLengthAtEdge = (curLength - targetLength)
 
-                 if (targetLength == 0):
 
-                     curFac = 0
 
-                 elif (targetLength == totalLength):
 
-                     curFac = 1
 
-                 else:
 
-                     # NOTE: This can be Zero. Find out why!
 
-                     if data[2] == 0:
 
-                         curFac=0
 
-                     else:
 
-                         curFac = 1 - (targetLengthAtEdge/ data[2]) #length
 
-             t1 = m.vertices[data[0][0]]; b1 = m.vertices[data[0][1]]
 
-             t2 = m.vertices[data[1][0]]; b2 = m.vertices[data[1][1]]
 
-             #location
 
-             loc1 = (t1.co).lerp(b1.co, 0.5)
 
-             loc2 = (t2.co).lerp(b2.co, 0.5)
 
-             #width
 
-             w1 = (t1.co - b1.co).length/2
 
-             w2 = (t2.co - b2.co).length/2 #radius, not diameter
 
-             #normal
 
-             n1 = (t1.normal).slerp(b1.normal, 0.5)
 
-             n2 = (t1.normal).slerp(b2.normal, 0.5)
 
-             if ((data[0][0] > data[1][0]) and (ribbon[2] == False)):
 
-                 curFac = 0
 
-                 #don't interpolate if at the end of a ribbon that isn't circular
 
-             if ( 0 < curFac < 1):
 
-                 outPoint = loc1.lerp(loc2, curFac)
 
-                 outNorm  = n1.lerp(n2, curFac)
 
-                 outWidth = w1 + ( (w2-w1) * curFac)
 
-             elif (curFac <= 0):
 
-                 outPoint = loc1.copy()
 
-                 outNorm = n1
 
-                 outWidth = w1
 
-             elif (curFac >= 1):
 
-                 outPoint = loc2.copy()
 
-                 outNorm = n2
 
-                 outWidth = w2
 
-             outPoint = mat @ outPoint
 
-             outNorm.normalize()
 
-             points.append ( outPoint.copy() ) #copy because this is an actual vertex location
 
-             widths.append ( outWidth )
 
-             normals.append( outNorm )
 
-         ret.append( (points, widths, normals) )
 
-     return ret # this is a list of tuples containing three lists
 
- #This bisection search is generic, and it searches based on the
 
- # magnitude of the error, rather than the sign.
 
- # If the sign of the error is meaningful, a simpler function
 
- # can be used.
 
- def do_bisect_search_by_magnitude(
 
-         owner, 
 
-         attribute,
 
-         index = None,
 
-         test_function = None,
 
-         modify = None,
 
-         max_iterations = 10000,
 
-         threshold = 0.0001,
 
-         thresh2   = 0.0005,
 
-         context = None,
 
-         update_dg = None,
 
-     ):
 
-     from math import floor
 
-     i = 0; best_so_far = 0; best = float('inf')
 
-     min = 0; center = max_iterations//2; max = max_iterations
 
-     # enforce getting the absolute value, in case the function has sign information
 
-     # The sign may be useful in a sign-aware bisect search, but this one is more robust!
 
-     test = lambda : abs(test_function(owner, attribute, index, context = context,))
 
-     while (i <= max_iterations):
 
-         upper = (max - ((max-center))//2)
 
-         modify(owner, attribute, index, upper, context = context); error1 = test()
 
-         lower = (center - ((center-min))//2)
 
-         modify(owner, attribute, index, lower, context = context); error2 = test()
 
-         if (error1 < error2):
 
-             min = center
 
-             center, check = upper, upper
 
-             error = error1
 
-         else:
 
-             max = center
 
-             center, check = lower, lower
 
-             error = error2
 
-         if (error <= threshold) or (min == max-1):
 
-             break
 
-         if (error < thresh2):
 
-             j = min
 
-             while (j < max):
 
-                 modify(owner, attribute, index, j * 1/max_iterations, context = context)
 
-                 error = test()
 
-                 if (error < best):
 
-                     best_so_far = j; best = error
 
-                 if (error <= threshold):
 
-                     break
 
-                 j+=1
 
-             else: # loop has completed without finding a solution
 
-                 i = best_so_far; error = test()
 
-                 modify(owner, attribute, index, best_so_far, context = context)
 
-                 break
 
-         if (error < best):
 
-             best_so_far = check; best = error
 
-         i+=1
 
-         if update_dg:
 
-             update_dg.update()
 
-     else: # Loop has completed without finding a solution
 
-         i = best_so_far
 
-         modify(owner, attribute, best_so_far, context = context); i+=1
 
 
  |