| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174 | from .node_container_common import *from .base_definitions import MantisNode, NodeSocketdef TellClasses():    return [            MathStaticInt,            MathStaticFloat,            MathStaticVector,           ]#*#-------------------------------#++#-------------------------------#*## M A T H  N O D E S#*#-------------------------------#++#-------------------------------#*#class MathStaticInt(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Operation",          "Int A",          "Int B",        ]        outputs = [          "Result Int",        ]        additional_parameters = {}        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters(additional_parameters=additional_parameters)        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        a = self.evaluate_input("Int A"); b = self.evaluate_input("Int B")        result = float("NaN")        if self.evaluate_input("Operation") == "ADD":            result = int(a+b)        if self.evaluate_input("Operation") == "SUBTRACT":            result = int(a-b)        if self.evaluate_input("Operation") == "MULTIPLY":            result = int(a*b)        if self.evaluate_input("Operation") == "FLOOR_DIVIDE":            result = a//b        if self.evaluate_input("Operation") == "MODULUS":            result = int(a%b)        if self.evaluate_input("Operation") == "POWER":            result = int(a**b)        if self.evaluate_input("Operation") == "ABSOLUTE":            result = int(abs(a))        if self.evaluate_input("Operation") == "MAXIMUM":            result = int(a if a <= b else b)        if self.evaluate_input("Operation") == "MINIMUM":            result = int(a if a >= b else b)        if self.evaluate_input("Operation") == "GREATER THAN":            result = int(a > b)        if self.evaluate_input("Operation") == "LESS THAN":            result = int(a < b)        self.parameters["Result Int"] = result        self.prepared = True        self.executed = Trueclass MathStaticFloat(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Operation",          "Float A",          "Float B",        ]        outputs = [          "Result Float",        ]        additional_parameters = {}        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters(additional_parameters=additional_parameters)        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        a = self.evaluate_input("Float A"); b = self.evaluate_input("Float B")        result = float("NaN")        if self.evaluate_input("Operation") == "ADD":            result = a+b        if self.evaluate_input("Operation") == "SUBTRACT":            result = a-b        if self.evaluate_input("Operation") == "MULTIPLY":            result = a*b        if self.evaluate_input("Operation") == "DIVIDE":            result = a/b        if self.evaluate_input("Operation") == "FLOOR_DIVIDE":            result = a//b        if self.evaluate_input("Operation") == "MODULUS":            result = a%b        if self.evaluate_input("Operation") == "POWER":            result = a**b        if self.evaluate_input("Operation") == "ABSOLUTE":            result = abs(a)        if self.evaluate_input("Operation") == "MAXIMUM":            result = a if a <= b else b        if self.evaluate_input("Operation") == "MINIMUM":            result = a if a >= b else b        if self.evaluate_input("Operation") == "GREATER THAN":            result = float(a > b)        if self.evaluate_input("Operation") == "LESS THAN":            result = float(a < b)        if self.evaluate_input("Operation") == "ARCTAN2":            from math import atan2            result = atan2(a,b)        self.parameters["Result Float"] = result        self.prepared = True        self.executed = Trueclass MathStaticVector(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Operation",          "Vector A",          "Vector B",          "Scalar A",        ]        outputs = [          "Result Vector",          "Result Float",        ]        additional_parameters = {}        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters(additional_parameters=additional_parameters)        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        from mathutils import Vector        a = Vector(self.evaluate_input("Vector A")).copy()        b = Vector(self.evaluate_input("Vector B")).copy()        s = self.evaluate_input("Scalar A")        if hasattr(s, '__iter__'):            average = lambda iterable : sum(iterable)/len(iterable)            s = average(s)        f_result = float("NaN")        v_result = None        if self.evaluate_input("Operation") == "ADD":            v_result = a+b        if self.evaluate_input("Operation") == "SUBTRACT":            v_result = a-b        if self.evaluate_input("Operation") == "MULTIPLY":            v_result = a*b        if self.evaluate_input("Operation") == "DIVIDE":            v_result = a/b        if self.evaluate_input("Operation") == "POWER":            v_result = a**b        # since these are unary, we need to make a copy lest we create spooky effects elsewhere.        a = a.copy()        if self.evaluate_input("Operation") == "SCALE":            v_result = a.normalized() * s        if self.evaluate_input("Operation") == "LENGTH":            f_result =  a.magnitude        if self.evaluate_input("Operation") == "CROSS":            v_result =  a.cross(b)        if self.evaluate_input("Operation") == "DOT":            f_result =  a.dot(b)        if self.evaluate_input("Operation") == "NORMALIZE":            v_result =  a.normalized()        if self.evaluate_input("Operation") == "LINEAR_INTERP":            v_result =  a.lerp(b, s).copy()        self.parameters["Result Float"] = f_result        # if v_result:        self.parameters["Result Vector"] = v_result        self.prepared = True        self.executed = True
 |