| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145 | 
#fool: should be wrColor like prColor... dumbdef wrapRed(skk):    return "\033[91m{}\033[00m".format(skk)def wrapGreen(skk):  return "\033[92m{}\033[00m".format(skk)def wrapPurple(skk): return "\033[95m{}\033[00m".format(skk)def wrapWhite(skk):  return "\033[97m{}\033[00m".format(skk)def wrapOrange(skk):  return "\033[0;33m{}\033[00m".format(skk)# these should reimplement the print interface..def prRed(*args): print (*[wrapRed(arg) for arg in args])def prGreen(*args): print (*[wrapGreen(arg) for arg in args])def prPurple(*args): print (*[wrapPurple(arg) for arg in args])def prWhite(*args): print (*[wrapWhite(arg) for arg in args])def prOrange(*args): print (*[wrapOrange(arg) for arg in args])# add THIS to the top of a file for easy access:# from mantis.utilities import (prRed, prGreen, prPurple, prWhite,#                               prOrange,#                               wrapRed, wrapGreen, wrapPurple, wrapWhite,#                               wrapOrange,)# A fuction for getting to the end of a Reroute.# TODO: this seems really inefficient!def socket_seek(start_link, links):    link = start_link    while(link.from_socket):        for newlink in links:            if link.from_socket.node.inputs:                if link.from_node.bl_idname != 'NodeReroute':                    return link.from_socket                if newlink.to_socket == link.from_socket.node.inputs[0]:                    link=newlink; break        else:            break    return link.from_socket# this creates fake links that have the same interface as Blender's# so that I can bypass Reroutesdef clear_reroutes(links):    from .base_definitions import DummyLink    kept_links, rerouted_starts = [], []    rerouted = []    all_links = links.copy()    while(all_links):        link = all_links.pop()        to_cls = link.to_socket.node.bl_idname        from_cls = link.from_socket.node.bl_idname        reroute_classes = ["NodeReroute"]        if (to_cls in reroute_classes and            from_cls in reroute_classes):                rerouted.append(link)        elif (to_cls in reroute_classes and not            from_cls in reroute_classes):                rerouted.append(link)        elif (from_cls in reroute_classes and not            to_cls in reroute_classes):                rerouted_starts.append(link)        else:            kept_links.append(link)    for start in rerouted_starts:        from_socket = socket_seek(start, rerouted)        new_link = DummyLink(from_socket=from_socket, to_socket=start.to_socket, nc_from=None, nc_to=None, multi_input_sort_id=start.multi_input_sort_id )        kept_links.append(new_link)    return kept_linksdef tree_from_nc(sig, base_tree):    if (sig[0] == 'MANTIS_AUTOGENERATED'):        sig = sig[:-2] # cut off the end part of the signature (because it uses socket.name and socket.identifier)        # this will lead to totally untraceble bugs in the event of a change in how signatures are assigned    tree = base_tree    for i, path_item in enumerate(sig):        if (i == 0) or (i == len(sig) - 1):            continue        tree = tree.nodes.get(path_item).node_tree    return tree    def get_node_prototype(sig, base_tree):    return tree_from_nc(sig, base_tree).nodes.get( sig[-1] )################################################################################################### groups and changing sockets -- this is used extensively by Schema.################################################################################################### this one returns None if there is an error.def get_socket_maps(node, force=False):    maps = [{}, {}]    node_collection = ["inputs", "outputs"]    links = ["from_socket", "to_socket"]    for collection, map, linked_socket in zip(node_collection, maps, links):        for sock in getattr(node, collection):            if sock.is_linked:                other_sockets = []                # Sort the links first (in case they are mult-input), because Blender doesn't                links = sorted(list(sock.links), key = lambda l : l.multi_input_sort_id)                # HACK here because Blender will crash if the socket values in the NodeReroute                #  are mutated. Because this seems to happen in a deffered way, I can't account                #  for it except by checking the node later...                # TODO: The fact that I need this hack means I can probably solve this problem                #  for all node types in a safer way, since they may also be dynamic somehow                for l in links:                    if "from" in linked_socket and l.from_node.bl_idname == "NodeReroute":                        other_sockets.append(l.from_node)                    elif "to" in linked_socket and l.to_node.bl_idname == "NodeReroute":                        other_sockets.append(l.to_node)                    else:                        other_sockets.append(getattr(l, linked_socket))                map[sock.identifier]= other_sockets            elif hasattr(sock, "default_value"):                if sock.get("default_value") is not None:                    val = sock['default_value']                elif sock.bl_idname == "EnumCurveSocket" and sock.get("default_value") is None:                    # HACK I need to add this special case because during file-load,                    #  this value is None and should not be altered until it is set once.                    continue                elif "Enum" in sock.bl_idname and isinstance(sock.get("default_value"), int):                    continue # for string enum properties that have not yet initialized (at startup)                elif (val := sock.default_value) is not None:                    pass                elif not force:                    continue                map[sock.identifier]=val            else:                from .socket_definitions import no_default_value                if sock.bl_idname in no_default_value:                    map[sock.identifier]=None                else:                    raise RuntimeError(f"ERROR: Could not get socket data for socket of type: {sock.bl_idname}")    if node.name == 'Morph Target XZ 4-shape':        raise NotImplementedError    return maps# this function is completely overloaded with different purposes and code paths# TODO refactor everything that funnels into this function# make this stuff simpler.def do_relink(node, s, map, in_out='INPUT', parent_name = ''):    if not node.__class__.is_registered_node_type(): return    tree = node.id_data; interface_in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT'    if hasattr(node, "node_tree"):        tree = node.node_tree        interface_in_out=in_out    from bpy.types import NodeSocket, Node    get_string = '__extend__'    if s: get_string = s.identifier    from .base_definitions import SchemaUINode    if (hasattr(node, "node_tree") or isinstance(node, SchemaUINode)) and get_string not in map.keys():        # this happens when we are creating a new node group and need to update it from nothing.        return    val = map[get_string] # this will throw an error if the socket isn't there. Good!    if isinstance(val, list):        for sub_val in val:            # this will only happen once because it assigns s, so it is safe to do in the for loop.            if s is None:                name = unique_socket_name(node, sub_val, tree)                sock_type = sub_val.bl_idname                if parent_name:                    interface_socket = update_interface(tree.interface, name, interface_in_out, sock_type, parent_name)                if in_out =='INPUT':                    s = node.inputs.new(sock_type, name, identifier=interface_socket.identifier)                else:                    s = node.outputs.new(sock_type, name, identifier=interface_socket.identifier)                if parent_name == 'Array': s.display_shape='SQUARE_DOT'                if parent_name == 'Constant': s.display_shape='CIRCLE_DOT'                # then move it up and delete the other link.                # this also needs to modify the interface of the node tree.            if isinstance(sub_val, NodeSocket):                l = None                if in_out =='INPUT':                    l = node.id_data.links.new(input=sub_val, output=s)                else:                    l = node.id_data.links.new(input=s, output=sub_val)                if l is None:                    raise RuntimeError("Could not create link")            elif isinstance(sub_val, Node):                l = None                # this happens when it is a NodeReroute                if not s.is_output:                    l = node.id_data.links.new(input=sub_val.outputs[0], output=s)                else:                    l = node.id_data.links.new(input=s, output=sub_val.inputs[0])                if l is None:                    raise RuntimeError("Could not create link")            else:                raise RuntimeError("Unhandled case in do_relink()")    elif get_string != "__extend__":        if not s.is_output:            try:                s.default_value = val            except (AttributeError, ValueError): # must be readonly or maybe it doesn't have a d.v.                passdef update_interface(interface, name, in_out, sock_type, parent_name):    if parent_name:        if not (interface_parent := interface.items_tree.get(parent_name)):            interface_parent = interface.new_panel(name=parent_name)        socket = interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)        if parent_name == 'Connection':            in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT' # flip this make sure connections always do both            interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)        return socket    else:        raise RuntimeError(wrapRed("Cannot add interface item to tree without specifying type."))#UGLY BAD REFACTORdef relink_socket_map_add_socket(node, socket_collection, item, in_out=None,):    if not in_out: in_out=item.in_out    if node.bl_idname in ['MantisSchemaGroup'] and item.parent and item.parent.name == 'Array':        multi = True if in_out == 'INPUT' else False        s = socket_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier,  use_multi_input=multi)    else:        s = socket_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier)    if item.parent.name == 'Array': s.display_shape = 'SQUARE_DOT'    elif item.parent.name == 'Constant': s.display_shape='CIRCLE_DOT'    return s# TODO REFACTOR THIS# I did this awful thing because I needed the above code# but I have provided this interface to Mantis# I did not follow the Single Responsibility Principle# I am now suffering for it, as I rightly deserve.def relink_socket_map(node, socket_collection, map, item, in_out=None,):    s = relink_socket_map_add_socket(node, socket_collection, item, in_out=None,)    do_relink(node, s, map)def unique_socket_name(node, other_socket, tree):    name_stem = other_socket.bl_label; num=0    # if hasattr(other_socket, "default_value"):    #     name_stem = type(other_socket.default_value).__name__    for item in tree.interface.items_tree:        if item.item_type == 'PANEL': continue        if other_socket.is_output and item.in_out == 'INPUT': continue        if not other_socket.is_output and item.in_out == 'OUTPUT': continue        if name_stem in item.name: num+=1    name = name_stem + '.' + str(num).zfill(3)    return name###############################  READ TREE and also Schema Solve!############################### TODO: refactor the following two functions, they should be one function with arguments.def init_connections(nc):    c, hc = [], []    for i in nc.outputs.values():        for l in i.links:            # if l.from_node != nc:            #     continue            if l.is_hierarchy:                hc.append(l.to_node)            c.append(l.to_node)    nc.hierarchy_connections = hc    nc.connections = cdef init_dependencies(nc):    c, hc = [], []    for i in nc.inputs.values():        for l in i.links:            # if l.to_node != nc:            #     continue            if l.is_hierarchy:                hc.append(l.from_node)            c.append(l.from_node)    nc.hierarchy_dependencies = hc    nc.dependencies = cdef schema_dependency_handle_item(schema, all_nc, item,):    hierarchy = True    from .base_definitions import from_name_filter, to_name_filter    if item.in_out == 'INPUT':        dependencies = schema.dependencies        hierarchy_dependencies = schema.hierarchy_dependencies        if item.parent and item.parent.name == 'Array':            for schema_idname in ['SchemaArrayInput', 'SchemaArrayInputGet', 'SchemaArrayInputAll']:                if (nc := all_nc.get( (*schema.signature, schema_idname) )):                    for to_link in nc.outputs[item.name].links:                        if to_link.to_socket in to_name_filter:                            # hierarchy_reason='a'                            hierarchy = False                    for from_link in schema.inputs[item.identifier].links:                        if from_link.from_socket in from_name_filter:                            hierarchy = False                            # hierarchy_reason='b'                        if from_link.from_node not in dependencies:                            if hierarchy:                                hierarchy_dependencies.append(from_link.from_node)                            dependencies.append(from_link.from_node)        if item.parent and item.parent.name == 'Constant':            if nc := all_nc.get((*schema.signature, 'SchemaConstInput')):                for to_link in nc.outputs[item.name].links:                    if to_link.to_socket in to_name_filter:                        # hierarchy_reason='dependencies'                        hierarchy = False                for from_link in schema.inputs[item.identifier].links:                    if from_link.from_socket in from_name_filter:                        # hierarchy_reason='d'                        hierarchy = False                    if from_link.from_node not in dependencies:                        if hierarchy:                            hierarchy_dependencies.append(from_link.from_node)                        dependencies.append(from_link.from_node)        if item.parent and item.parent.name == 'Connection':            if nc := all_nc.get((*schema.signature, 'SchemaIncomingConnection')):                for to_link in nc.outputs[item.name].links:                    if to_link.to_socket in to_name_filter:                        # hierarchy_reason='e'                        hierarchy = False                for from_link in schema.inputs[item.identifier].links:                    if from_link.from_socket in from_name_filter:                        # hierarchy_reason='f'                        hierarchy = False                    if from_link.from_node not in dependencies:                        if hierarchy:                            hierarchy_dependencies.append(from_link.from_node)                        dependencies.append(from_link.from_node)def init_schema_dependencies(schema, all_nc):    """ Initialize the dependencies for Schema, and mark them as hierarchy or non-hierarchy dependencies        Non-hierarchy dependencies are e.g. drivers and custom transforms.    """    tree = schema.prototype.node_tree    if tree is None:        raise RuntimeError(f"Cannot get dependencies for schema {schema}")    schema.dependencies = []    schema.hierarchy_dependencies = []    for l in schema.inputs["Schema Length"].links:        schema.hierarchy_dependencies.append(l.from_node)    if tree.interface:        for item in tree.interface.items_tree:            if item.item_type == 'PANEL':                continue            schema_dependency_handle_item(schema, all_nc, item,)def check_and_add_root(n, roots, include_non_hierarchy=False):    if (include_non_hierarchy * len(n.dependencies)) > 0:        return     elif len(n.hierarchy_dependencies) > 0:        return    roots.append(n)def get_link_in_out(link):    from .base_definitions import replace_types    from_name, to_name = link.from_socket.node.name, link.to_socket.node.name    # catch special bl_idnames and bunch the connections up    if link.from_socket.node.bl_idname in replace_types:        from_name = link.from_socket.node.bl_idname     if link.to_socket.node.bl_idname in replace_types:        to_name = link.to_socket.node.bl_idname    return from_name, to_namedef link_node_containers(tree_path_names, link, local_nc, from_suffix='', to_suffix=''):    dummy_types = ["DUMMY", "DUMMY_SCHEMA"]    from_name, to_name = get_link_in_out(link)    nc_from = local_nc.get( (*tree_path_names, from_name+from_suffix) )    nc_to = local_nc.get( (*tree_path_names, to_name+to_suffix))    if (nc_from and nc_to):        from_s, to_s = link.from_socket.name, link.to_socket.name        if nc_to.node_type in dummy_types: to_s = link.to_socket.identifier        if nc_from.node_type in dummy_types: from_s = link.from_socket.identifier        try:            connection = nc_from.outputs[from_s].connect(node=nc_to, socket=to_s, sort_id=link.multi_input_sort_id)            if connection is None:                prWhite(f"Already connected: {from_name}:{from_s}->{to_name}:{to_s}")            return connection        except KeyError as e:            prRed(f"{nc_from}:{from_s} or {nc_to}:{to_s} missing; review the connections printed below:")            print (nc_from.outputs.keys())            print (nc_to.inputs.keys())            raise e    else:        prRed(nc_from, nc_to, (*tree_path_names, from_name+from_suffix), (*tree_path_names, to_name+to_suffix))        raise RuntimeError(wrapRed("Link not connected: %s -> %s in tree %s" % (from_name, to_name, tree_path_names[-1])))    def get_all_dependencies(nc):    from .base_definitions import GraphError    """ find all dependencies for a mantis node"""    nodes = []    check_nodes = [nc]    nodes_checked = set()    while (len(check_nodes) > 0):        node = check_nodes.pop()        nodes_checked.add (node)        connected_nodes = node.hierarchy_dependencies        for new_node in connected_nodes:            if new_node in nodes:                continue            nodes.append(new_node)            if new_node not in nodes_checked:                check_nodes.append(new_node)    return nodes                def get_all_nodes_of_type(base_tree, bl_idname):    nodes = []    check_nodes = list(base_tree.nodes)    while (len(check_nodes) > 0):        node = check_nodes.pop()        if node.bl_idname in bl_idname:            nodes.append(node)        if hasattr(node, "node_tree"):            check_nodes.extend(list(node.node_tree.nodes))    return nodes            ################################################################################################### misc################################################################################################### TODO: get the matrix to return a mathutils.Matrix so I don't need a function call heredef to_mathutils_value(socket):    if hasattr(socket, "default_value"):        val = socket.default_value        if socket.bl_idname in ['MatrixSocket']:            return socket.TellValue()        else:            return val    else:        return Nonedef all_trees_in_tree(base_tree, selected=False):    """ Recursively finds all trees referenced in a given base-tree."""    # note that this is recursive but not by tail-end recursion    # a while-loop is a better way to do recursion in Python.    trees = [base_tree]    can_descend = True    check_trees = [base_tree]    while (len(check_trees) > 0): # this seems innefficient, why 2 loops?        new_trees = []        while (len(check_trees) > 0):            tree = check_trees.pop()            for node in tree.nodes:                if selected == True and node.select == False:                    continue                if new_tree := getattr(node, "node_tree", None):                    if new_tree in trees: continue                     new_trees.append(new_tree)                    trees.append(new_tree)        check_trees = new_trees    return trees# this is a destructive operation, not a pure function or whatever. That isn't good but I don't care.def SugiyamaGraph(tree, iterations):        from grandalf.graphs import Vertex, Edge, Graph, graph_core        class defaultview(object):            w,h = 1,1            xz = (0,0)                no_links = set()        verts = {}        for n in tree.nodes:            has_links=False            for inp in n.inputs:                if inp.is_linked:                    has_links=True                    break            else:                no_links.add(n.name)            for out in n.outputs:                if out.is_linked:                    has_links=True                    break            else:                try:                    no_links.remove(n.name)                except KeyError:                    pass            if not has_links:                continue                            v = Vertex(n.name)            v.view = defaultview()            v.view.xy = n.location            v.view.h = n.height*2.5            v.view.w = n.width*2.2            verts[n.name] = v                    edges = []        for link in tree.links:            weight = 1 # maybe this is useful            edges.append(Edge(verts[link.from_node.name], verts[link.to_node.name], weight) )        graph = Graph(verts.values(), edges)        from grandalf.layouts import SugiyamaLayout        sug = SugiyamaLayout(graph.C[0]) # no idea what .C[0] is        roots=[]        for node in tree.nodes:                        has_links=False            for inp in node.inputs:                if inp.is_linked:                    has_links=True                    break            for out in node.outputs:                if out.is_linked:                    has_links=True                    break            if not has_links:                continue                            if len(node.inputs)==0:                roots.append(verts[node.name])            else:                for inp in node.inputs:                    if inp.is_linked==True:                        break                else:                    roots.append(verts[node.name])                sug.init_all(roots=roots,)        sug.draw(iterations)        for v in graph.C[0].sV:            for n in tree.nodes:                if n.name == v.data:                    n.location.x = v.view.xy[1]                    n.location.y = v.view.xy[0]                # now we can take all the input nodes and try to put them in a sensible place        for n_name in no_links:            n = tree.nodes.get(n_name)            next_n = None            next_node = None            for output in n.outputs:                if output.is_linked == True:                    next_node = output.links[0].to_node                    break            # let's see if the next node            if next_node:                # need to find the other node in the same layer...                other_node = None                for s_input in next_node.inputs:                    if s_input.is_linked:                        other_node = s_input.links[0].from_node                        if other_node is n:                            continue                        else:                            break                if other_node:                    n.location = other_node.location                    n.location.y -= other_node.height*2                else: # we'll just position it next to the next node                    n.location = next_node.location                    n.location.x -= next_node.width*1.5        def project_point_to_plane(point, origin, normal):    return point - normal.dot(point- origin)*normal################################################################################################### stuff I should probably refactor!!################################################################################################### This is really, really stupid way to do thisdef gen_nc_input_for_data(socket):    # Class List #TODO deduplicate    from . import xForm_containers, link_containers, misc_nodes, primitives_containers, deformer_containers, math_containers, schema_containers    from .internal_containers import NoOpNode    classes = {}    for module in [xForm_containers, link_containers, misc_nodes, primitives_containers, deformer_containers, math_containers, schema_containers]:        for cls in module.TellClasses():            classes[cls.__name__] = cls    #    socket_class_map = {                        "MatrixSocket"                         : classes["InputMatrix"],                        "xFormSocket"                          : None,                        "RelationshipSocket"                   : NoOpNode,                        "DeformerSocket"                       : NoOpNode,                        "GeometrySocket"                       : classes["InputExistingGeometryData"],                        "EnableSocket"                         : classes["InputBoolean"],                        "HideSocket"                           : classes["InputBoolean"],                        #                        "DriverSocket"                         : None,                        "DriverVariableSocket"                 : None,                         "FCurveSocket"                         : None,                         "KeyframeSocket"                       : None,                        "BoneCollectionSocket"                 : classes["InputString"],                        #                        "xFormParameterSocket"                 : None,                        "ParameterBoolSocket"                  : classes["InputBoolean"],                        "ParameterIntSocket"                   : classes["InputFloat"],  #TODO: make an Int node for this                        "ParameterFloatSocket"                 : classes["InputFloat"],                        "ParameterVectorSocket"                : classes["InputVector"],                        "ParameterStringSocket"                : classes["InputString"],                        #                        "TransformSpaceSocket"                 : classes["InputTransformSpace"],                        "BooleanSocket"                        : classes["InputBoolean"],                        "BooleanThreeTupleSocket"              : classes["InputBooleanThreeTuple"],                        "RotationOrderSocket"                  : classes["InputRotationOrder"],                        "QuaternionSocket"                     : None,                        "QuaternionSocketAA"                   : None,                        "UnsignedIntSocket"                    : classes["InputFloat"],                        "IntSocket"                            : classes["InputFloat"],                        "StringSocket"                         : classes["InputString"],                        #                        "BoolUpdateParentNode"                 : classes["InputBoolean"],                        "IKChainLengthSocket"                  : classes["InputFloat"],                        "EnumInheritScale"                     : classes["InputString"],                        "EnumRotationMix"                      : classes["InputString"],                        "EnumRotationMixCopyTransforms"        : classes["InputString"],                        "EnumMaintainVolumeStretchTo"          : classes["InputString"],                        "EnumRotationStretchTo"                : classes["InputString"],                        "EnumTrackAxis"                        : classes["InputString"],                        "EnumUpAxis"                           : classes["InputString"],                        "EnumLockAxis"                         : classes["InputString"],                        "EnumLimitMode"                        : classes["InputString"],                        "EnumYScaleMode"                       : classes["InputString"],                        "EnumXZScaleMode"                      : classes["InputString"],                        "EnumCurveSocket"                      : classes["InputString"],                        "EnumMetaRigSocket"                    : classes["InputString"],                        # Deformers                        "EnumSkinning"                         : classes["InputString"],                        #                        "FloatSocket"                          : classes["InputFloat"],                        "FloatFactorSocket"                    : classes["InputFloat"],                        "FloatPositiveSocket"                  : classes["InputFloat"],                        "FloatAngleSocket"                     : classes["InputFloat"],                        "VectorSocket"                         : classes["InputVector"],                        "VectorEulerSocket"                    : classes["InputVector"],                        "VectorTranslationSocket"              : classes["InputVector"],                        "VectorScaleSocket"                    : classes["InputVector"],                        # Drivers                                     "EnumDriverVariableType"               : classes["InputString"],                        "EnumDriverVariableEvaluationSpace"    : classes["InputString"],                        "EnumDriverRotationMode"               : classes["InputString"],                        "EnumDriverType"                       : classes["InputString"],                        "EnumKeyframeInterpTypeSocket"         : classes["InputString"],                        "EnumKeyframeBezierHandleTypeSocket"   : classes["InputString"],                        # Math                        "MathFloatOperation"                   : classes["InputString"],                        "MathVectorOperation"                  : classes["InputString"],                        "MatrixTransformOperation"             : classes["InputString"],                        # Schema                        "WildcardSocket"                       : None,                       }    return socket_class_map.get(socket.bl_idname, None)##################################### CURVE STUFF####################################def make_perpendicular(v1, v2):    projected = (v2.dot(v1) / v1.dot(v1)) * v1    perpendicular = v2 - projected    return perpendicular# this stuff could be branchless but I don't use it much TODOdef cap(val, maxValue):    if (val > maxValue):        return maxValue    return valdef capMin(val, minValue):    if (val < minValue):        return minValue    return valdef wrap(min : float, max : float, value: float) -> float:    range = max-min; remainder = value % range    if remainder > max: return min + remainder-max    else: return remainderdef lerpVal(a, b, fac = 0.5):    return a + ( (b-a) * fac)#wtf this doesn't do anything even remotely similar to wrap# HACK BAD FIXME UNBREAK ME BAD# I don't understand what this function does but I am using it in multiple places?def old_bad_wrap_that_should_be_refactored(val, maxValue, minValue = None):    if (val > maxValue):        return (-1 * ((maxValue - val) + 1))    if ((minValue) and (val < minValue)):        return (val + maxValue)    return val    #TODO clean this updef extract_spline_suffix(spline_index):    return ".spline."+str(spline_index).zfill(3)+".extracted"def do_extract_spline(data, spline):    remove_me = []    for other_spline in data.splines:        if other_spline != spline: remove_me.append(other_spline)    while remove_me: data.splines.remove(remove_me.pop())def extract_spline(curve, spline_index):    """ Given a curve object and spline index, returns a new object        containing only the selcted spline. The new object is bound to        the original curve.    """    if len(curve.data.splines) == 1:        return curve # nothing to do here.    spline_suffix = extract_spline_suffix(spline_index)    from bpy import data    if (new_ob := data.objects.get(curve.name+spline_suffix)) is None:        new_ob=curve.copy(); new_ob.name=curve.name+spline_suffix    # if the data exists, it is probably stale, so delete it and start over.    if (old_data := data.objects.get(curve.data.name+spline_suffix)) is not None:        data.curves.remove(old_data)    new_data=curve.data.copy(); new_data.name=curve.data.name+spline_suffix    new_ob.data = new_data    # do not check for index error here, it is the calling function's responsibility    do_extract_spline(new_data, new_data.splines[spline_index])    # Set up a relationship between the new object and the old object    # now, weirdly enough - we can't use parenting very easily because Blender    # defines the parent on a curve relative to the evaluated path animation    # Setting the inverse matrix is too much work. Use Copy Transforms instead.    new_ob.constraints.clear(); new_ob.modifiers.clear()    c = new_ob.constraints.new("COPY_TRANSFORMS"); c.target=curve    new_ob.parent=curve    return new_obdef get_extracted_spline_object(proto_curve, spline_index, mContext):    # we're storing it separately like this to ensure all nodes use the same    #   object if they extract the same spline for use by Mantis.    # this should be transparent to the user since it is working around a    #   a limitation in Blender.    if ( curve := mContext.b_objects.get(                proto_curve.name+extract_spline_suffix(spline_index))) is None:        curve = extract_spline(proto_curve, spline_index)        mContext.b_objects[curve.name] = curve    return curvedef RibbonMeshEdgeLengths(m, ribbon):    tE = ribbon[0]; bE = ribbon[1]; c = ribbon[2]    lengths = []    for i in range( len( tE ) ): #tE and bE are same length        if (c == True):            v1NextInd = tE[old_bad_wrap_that_should_be_refactored((i+1), len(tE) - 1)]        else:            v1NextInd = tE[cap((i+1) , len(tE) - 1 )]        v1 = m.vertices[tE[i]]; v1Next = m.vertices[v1NextInd]        if (c == True):            v2NextInd = bE[old_bad_wrap_that_should_be_refactored((i+1), len(bE) - 1)]        else:            v2NextInd = bE[cap((i+1) , len(bE) - 1 )]        v2 = m.vertices[bE[i]]; v2Next = m.vertices[v2NextInd]                v = v1.co.lerp(v2.co, 0.5); vNext = v1Next.co.lerp(v2Next.co, 0.5)        # get the center, edges may not be straight so total length         #  of one edge may be more than the ribbon center's length        lengths.append(( v - vNext ).length)    return lengthsdef EnsureCurveIsRibbon(crv, defaultRadius = 0.1):    crvRadius = 0    crv.data.offset = 0    if (crv.data.bevel_depth == 0):        crvRadius = crv.data.extrude    else: #Set ribbon from bevel depth        crvRadius = crv.data.bevel_depth        crv.data.bevel_depth = 0        crv.data.extrude = crvRadius    if (crvRadius == 0):        crv.data.extrude = defaultRadiusdef SetRibbonData(m, ribbon):    #maybe this could be incorporated into the DetectWireEdges function?    #maybe I can check for closed poly curves here? under what other circumstance    # will I find the ends of the wire have identical coordinates?    ribbonData = []    tE = ribbon[0].copy(); bE = ribbon[1].copy()# circle = ribbon[2]    #    lengths = RibbonMeshEdgeLengths(m, ribbon)    lengths.append(0)    totalLength = sum(lengths)    # m.calc_normals() #calculate normals    # it appears this has been removed.    for i, (t, b) in enumerate(zip(tE, bE)):        ind = old_bad_wrap_that_should_be_refactored( (i + 1), len(tE) - 1 )        tNext = tE[ind]; bNext = bE[ind]        ribbonData.append(  ( (t,b), (tNext, bNext), lengths[i] ) )        #if this is a circle, the last v in vertData has a length, otherwise 0    return ribbonData, totalLengthdef WireMeshEdgeLengths(m, wire):    circle = False    vIndex = wire.copy()    for e in m.edges:        if ((e.vertices[0] == vIndex[-1]) and (e.vertices[1] == vIndex[0])):            #this checks for an edge between the first and last vertex in the wire            circle = True            break    lengths = []    for i in range(len(vIndex)):        v = m.vertices[vIndex[i]]        if (circle == True):            vNextInd = vIndex[old_bad_wrap_that_should_be_refactored((i+1), len(vIndex) - 1)]        else:            vNextInd = vIndex[cap((i+1), len(vIndex) - 1 )]        vNext = m.vertices[vNextInd]        lengths.append(( v.co - vNext.co ).length)    #if this is a circular wire mesh, this should wrap instead of cap    return lengthsdef GetDataFromWire(m, wire):    vertData = []    vIndex = wire.copy()    lengths = WireMeshEdgeLengths(m, wire)    lengths.append(0)    totalLength = sum(lengths)    for i, vInd in enumerate(vIndex):        #-1 to avoid IndexError        vNext = vIndex[ (old_bad_wrap_that_should_be_refactored(i+1, len(vIndex) - 1)) ]        vertData.append((vInd, vNext, lengths[i]))    #if this is a circle, the last v in vertData has a length, otherwise 0    return vertData, totalLengthdef DetectWireEdges(mesh):    # Returns a list of vertex indices belonging to wire meshes    # NOTE: this assumes a mesh object with only wire meshes    ret = []    import bmesh    bm = bmesh.new()    try:        bm.from_mesh(mesh)        ends = []        for v in bm.verts:            if (len(v.link_edges) == 1):                ends.append(v.index)        for e in bm.edges:            assert (e.is_wire == True),"This function can only run on wire meshes"            if (e.verts[1].index - e.verts[0].index != 1):                ends.append(e.verts[1].index)                ends.append(e.verts[0].index)        for i in range(len(ends)//2): # // is floor division            beg = ends[i*2]            end = ends[(i*2)+1]            indices = [(j + beg) for j in range ((end - beg) + 1)]            ret.append(indices)    finally:        bm.free()        return retdef FindNearestPointOnWireMesh(m, pointsList):    from mathutils import Vector    from mathutils.geometry import intersect_point_line    from math import sqrt    wires = DetectWireEdges(m)    ret = []    # prevFactor = None    for wire, points in zip(wires, pointsList):        vertData, total_length = GetDataFromWire(m, wire)        factorsOut = []        for p in points:            prevDist = float('inf')            curDist  = float('inf')            v1 = None            v2 = None            for i in range(len(vertData) - 1):                #but it shouldn't check the last one                if (p == m.vertices[i].co):                    v1 = vertData[i]                    v2 = vertData[i+1]                    offset = 0                    break                else:                    curDist = ( ((m.vertices[vertData[i][0]].co - p).length) +                                ((m.vertices[vertData[i][1]].co - p).length) )/2                if (curDist < prevDist):                    v1 = vertData[i]                    v2 = vertData[i+1]                    prevDist = curDist                    offset = intersect_point_line(p, m.vertices[v1[0]].co,                                                      m.vertices[v2[0]].co)[1]            if (offset < 0):                offset = 0            elif (offset > 1):                offset = 1            # Assume the vertices are in order            v1Length = 0            v2Length = v2[2]            for i in range(v1[0]):                v1Length += vertData[i][2]            factor = ((offset * (v2Length)) + v1Length )/total_length            factor = wrap(0, 1, factor) # doesn't hurt to wrap it if it's over 1 or less than 0            factorsOut.append(factor)        ret.append( factorsOut )    return retdef mesh_from_curve(crv, context, ribbon=True):    """Utility function for converting a mesh to a curve       which will return the correct mesh even with modifiers"""    import bpy    m = None    bevel = crv.data.bevel_depth    extrude = crv.data.extrude    offset = crv.data.offset    try:        if (len(crv.modifiers) > 0):            do_unlink = False            if (not context.scene.collection.all_objects.get(crv.name)):                context.collection.objects.link(crv) # i guess this forces the dg to update it?                do_unlink = True            dg = context.view_layer.depsgraph            # just gonna modify it for now lol            if ribbon:                EnsureCurveIsRibbon(crv)            else:                crv.data.bevel_depth=0                crv.data.extrude=0                crv.data.offset=0            # try:            dg.update()            mOb = crv.evaluated_get(dg)            m = bpy.data.meshes.new_from_object(mOb)            m.name=crv.data.name+'_mesh'            if (do_unlink):                context.collection.objects.unlink(crv)        else: # (ಥ﹏ಥ) why can't I just use this !            # for now I will just do it like this            if ribbon:                EnsureCurveIsRibbon(crv)            else:                crv.data.bevel_depth=0                crv.data.extrude=0                crv.data.offset=0            m = bpy.data.meshes.new_from_object(crv)    finally:        crv.data.bevel_depth = bevel        crv.data.extrude = extrude        crv.data.offset = offset    return mdef DetectRibbon(f, bm, skipMe):    fFirst = f.index    cont = True    circle = False    tEdge, bEdge = [],[]    while (cont == True):        skipMe.add(f.index)        tEdge.append (f.loops[0].vert.index) # top-left        bEdge.append (f.loops[3].vert.index) # bottom-left        nEdge = bm.edges.get([f.loops[1].vert, f.loops[2].vert])        nFaces = nEdge.link_faces        if (len(nFaces) == 1):             cont = False        else:            for nFace in nFaces:                if (nFace != f):                    f = nFace                    break            if (f.index == fFirst):                cont = False                circle = True        if (cont == False): # we've reached the end, get the last two:            tEdge.append (f.loops[1].vert.index) # top-right            bEdge.append (f.loops[2].vert.index) # bottom-right            # this will create a loop for rings --             #  "the first shall be the last and the last shall be first"    return (tEdge,bEdge,circle)def DetectRibbons(m, fReport = None):    # Returns list of vertex indices belonging to ribbon mesh edges    # NOTE: this assumes a mesh object with only ribbon meshes    # ---DO NOT call this script with a mesh that isn't a ribbon!--- #    import bmesh    bm = bmesh.new()    bm.from_mesh(m)    mIslands, mIsland = [], []    skipMe = set()    bm.faces.ensure_lookup_table()    #first, get a list of mesh islands    for f in bm.faces:        if (f.index in skipMe):            continue #already done here        checkMe = [f]        while (len(checkMe) > 0):            facesFound = 0            for f in checkMe:                if (f.index in skipMe):                    continue #already done here                mIsland.append(f)                skipMe.add(f.index)                for e in f.edges:                    checkMe += e.link_faces            if (facesFound == 0):                #this is the last iteration                mIslands.append(mIsland)                checkMe, mIsland = [], []    ribbons = []    skipMe = set() # to store ends already checked    for mIsl in mIslands:        ribbon = None        first = float('inf')        for f in mIsl:            if (f.index in skipMe):                continue #already done here            if (f.index < first):                first = f.index            adjF = 0            for e in f.edges:                adjF+= (len(e.link_faces) - 1)                # every face other than this one is added to the list            if (adjF == 1):                ribbon = (DetectRibbon(f, bm, skipMe) )                break        if (ribbon == None):            ribbon = (DetectRibbon(bm.faces[first], bm, skipMe) )        ribbons.append(ribbon)    # print (ribbons)    return ribbonsdef data_from_ribbon_mesh(m, factorsList, mat, ribbons = None, fReport = None):    #Note, factors list should be equal in length the the number of wires    #Now working for multiple wires, ugly tho    if (ribbons == None):        ribbons = DetectRibbons(m, fReport=fReport)        if (ribbons is None):            if (fReport):                fReport(type = {'ERROR'}, message="No ribbon to get data from.")            else:                  print ("No ribbon to get data from.")            return None    ret = []    for factors, ribbon in zip(factorsList, ribbons):        points  = []        widths  = []        normals = []        ribbonData, totalLength = SetRibbonData(m, ribbon)        for fac in factors:            if (fac == 0):                data = ribbonData[0]                curFac = 0            elif (fac == 1):                data = ribbonData[-1]                curFac = 0            else:                targetLength = totalLength * fac                data = ribbonData[0]                curLength = 0                for ( (t, b), (tNext, bNext), length,) in ribbonData:                    if (curLength >= targetLength):                        break                    curLength += length                    data = ( (t, b), (tNext, bNext), length,)                targetLengthAtEdge = (curLength - targetLength)                if (targetLength == 0):                    curFac = 0                elif (targetLength == totalLength):                    curFac = 1                else:                    # NOTE: This can be Zero. That should throw an error.                    curFac = 1 - (targetLengthAtEdge/ data[2]) #length            t1 = m.vertices[data[0][0]]; b1 = m.vertices[data[0][1]]            t2 = m.vertices[data[1][0]]; b2 = m.vertices[data[1][1]]            #location            loc1 = (t1.co).lerp(b1.co, 0.5)            loc2 = (t2.co).lerp(b2.co, 0.5)            #width            w1 = (t1.co - b1.co).length/2            w2 = (t2.co - b2.co).length/2 #radius, not diameter            #normal            n1 = (t1.normal).slerp(b1.normal, 0.5)            n2 = (t1.normal).slerp(b2.normal, 0.5)            if ((data[0][0] > data[1][0]) and (ribbon[2] == False)):                curFac = 0                #don't interpolate if at the end of a ribbon that isn't circular            if ( 0 < curFac < 1):                outPoint = loc1.lerp(loc2, curFac)                outNorm  = n1.lerp(n2, curFac)                outWidth = w1 + ( (w2-w1) * curFac)            elif (curFac <= 0):                outPoint = loc1.copy()                outNorm = n1                outWidth = w1            elif (curFac >= 1):                outPoint = loc2.copy()                outNorm = n2                outWidth = w2            outPoint = mat @ outPoint            outNorm.normalize()            points.append ( outPoint.copy() ) #copy because this is an actual vertex location            widths.append ( outWidth )            normals.append( outNorm )        ret.append( (points, widths, normals) )    return ret # this is a list of tuples containing three lists#This bisection search is generic, and it searches based on the# magnitude of the error, rather than the sign.# If the sign of the error is meaningful, a simpler function# can be used.def do_bisect_search_by_magnitude(        owner,         attribute,        index = None,        test_function = None,        modify = None,        max_iterations = 10000,        threshold = 0.0001,        thresh2   = 0.0005,        context = None,        update_dg = None,    ):    from math import floor    i = 0; best_so_far = 0; best = float('inf')    min = 0; center = max_iterations//2; max = max_iterations    # enforce getting the absolute value, in case the function has sign information    # The sign may be useful in a sign-aware bisect search, but this one is more robust!    test = lambda : abs(test_function(owner, attribute, index, context = context,))    while (i <= max_iterations):        upper = (max - ((max-center))//2)        modify(owner, attribute, index, upper, context = context); error1 = test()        lower = (center - ((center-min))//2)        modify(owner, attribute, index, lower, context = context); error2 = test()        if (error1 < error2):            min = center            center, check = upper, upper            error = error1        else:            max = center            center, check = lower, lower            error = error2        if (error <= threshold) or (min == max-1):            break        if (error < thresh2):            j = min            while (j < max):                modify(owner, attribute, index, j * 1/max_iterations, context = context)                error = test()                if (error < best):                    best_so_far = j; best = error                if (error <= threshold):                    break                j+=1            else: # loop has completed without finding a solution                i = best_so_far; error = test()                modify(owner, attribute, index, best_so_far, context = context)                break        if (error < best):            best_so_far = check; best = error        i+=1        if update_dg:            update_dg.update()    else: # Loop has completed without finding a solution        i = best_so_far        modify(owner, attribute, best_so_far, context = context); i+=1
 |