| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875 |
- from .node_container_common import *
- from .base_definitions import MantisNode, NodeSocket, FLOAT_EPSILON
- from .xForm_containers import xFormArmature, xFormBone
- from .misc_nodes_socket_templates import *
- from math import pi, tau
- def TellClasses():
- return [
- # utility
- InputFloat,
- InputIntNode,
- InputVector,
- InputBoolean,
- InputBooleanThreeTuple,
- InputRotationOrder,
- InputTransformSpace,
- InputString,
- InputMatrix,
- InputExistingGeometryObject,
- InputExistingGeometryData,
- UtilityGeometryOfXForm,
- UtilityNameOfXForm,
- UtilityPointFromCurve,
- UtilityMatrixFromCurve,
- UtilityMatricesFromCurve,
- UtilityNumberOfCurveSegments,
- UtilityNumberOfSplines,
- UtilityMatrixFromCurveSegment,
- UtilityGetCurvePoint,
- UtilityGetNearestFactorOnCurve,
- UtilityKDChoosePoint,
- UtilityKDChooseXForm,
- UtilityMetaRig,
- UtilityBoneProperties,
- UtilityDriverVariable,
- UtilityDriver,
- UtilityFCurve,
- UtilityKeyframe,
- UtilitySwitch,
- UtilityCombineThreeBool,
- UtilityCombineVector,
- UtilitySeparateVector,
- UtilityCatStrings,
- UtilityGetBoneLength,
- UtilityPointFromBoneMatrix,
- UtilitySetBoneLength,
- UtilityMatrixSetLocation,
- UtilityMatrixGetLocation,
- UtilityMatrixFromXForm,
- UtilityAxesFromMatrix,
- UtilityBoneMatrixHeadTailFlip,
- UtilityMatrixTransform,
- UtilityMatrixInvert,
- UtilityMatrixCompose,
- UtilityMatrixAlignRoll,
- UtilityTransformationMatrix,
- UtilityIntToString,
- UtilityArrayGet,
- UtilityArrayLength,
- UtilitySetBoneMatrixTail,
- # Control flow switches
- UtilityCompare,
- UtilityChoose,
- # useful NoOp:
- UtilityPrint,
- ]
- def matrix_from_head_tail(head, tail, normal=None):
- from mathutils import Vector, Matrix
- if normal is None:
- rotation = Vector((0,1,0)).rotation_difference((tail-head).normalized()).to_matrix()
- m= Matrix.LocRotScale(head, rotation, None)
- else: # construct a basis matrix
- m = Matrix.Identity(3)
- axis = (tail-head).normalized()
- conormal = axis.cross(normal)
- m[0]=conormal
- m[1]=axis
- m[2]=normal
- m = m.transposed().to_4x4()
- m.translation=head.copy()
- m[3][3]=(tail-head).length
- return m
- def get_mesh_from_curve(curve_name : str, execution_id : str, bContext, ribbon=True):
- from bpy import data
- curve = data.objects.get(curve_name)
- assert curve.type == 'CURVE', f"ERROR: object is not a curve: {curve_name}"
- from .utilities import mesh_from_curve
- curve_type='ribbon' if ribbon else 'wire'
- m_name = curve_name+'.'+str(hash(curve_name+'.'+curve_type+'.'+execution_id))
- if not (m := data.meshes.get(m_name)):
- m = mesh_from_curve(curve, bContext, ribbon)
- m.name = m_name
- return m
- def cleanup_curve(curve_name : str, execution_id : str) -> None:
- import bpy
- curve = bpy_object_get_guarded(curve_name)
- m_name = curve_name+'.'+str(hash(curve.name+'.'+ execution_id))
- if (mesh := bpy.data.meshes.get(m_name)):
- bpy.data.meshes.remove(mesh)
- def kd_find(node, points, ref_pt, num_points):
- if num_points == 0:
- raise RuntimeError(f"Cannot find 0 points for {node}")
- from mathutils import kdtree
- kd = kdtree.KDTree(len(points))
- for i, pt in enumerate(points):
- try:
- kd.insert(pt, i)
- except (TypeError, ValueError) as e:
- prRed(f"Cannot get point from for {node}")
- raise e
- kd.balance()
- try:
- if num_points == 1: # make it a list to keep it consistent with
- result = [kd.find(ref_pt)] # find_n which returns a list
- else:
- result = kd.find_n(ref_pt, num_points)
- # the result of kd.find has some other stuff we don't care about
- except (TypeError, ValueError) as e:
- prRed(f"Reference Point {ref_pt} invalid for {node}")
- raise e
- return result
- def array_link_init_hierarchy(new_link):
- " Sets up hierarchy connection/dependencies for links created by Arrays."
- if new_link.is_hierarchy:
- connections = new_link.from_node.hierarchy_connections
- dependencies = new_link.to_node.hierarchy_dependencies
- else:
- connections = new_link.from_node.connections
- dependencies = new_link.to_node.dependencies
- connections.append(new_link.to_node)
- dependencies.append(new_link.from_node)
- def array_choose_relink(node, indices, array_input, output, ):
- """
- Used to choose the correct link to send out of an array-choose node.
- """
- keep_links = []
- for index in indices:
- l = node.inputs[array_input].links[index]
- keep_links.append(l)
- for link in node.outputs[output].links:
- to_node = link.to_node
- for l in keep_links:
- new_link = l.from_node.outputs[l.from_socket].connect(to_node, link.to_socket)
- array_link_init_hierarchy(new_link)
- node.rerouted.append(new_link) # so I can access this in Schema Solve
- link.die()
- def array_choose_data(node, data, output):
- """
- Used to choose the correct data to send out of an array-choose node.
- """
- # We need to make new outputs and link from each one based on the data in the array...
- node.outputs.init_sockets([output+"."+str(i).zfill(4) for i in range(len(data)) ])
- for i, data_item in enumerate(data):
- node.parameters[output+"."+str(i).zfill(4)] = data_item
- for link in node.outputs[output].links:
- to_node = link.to_node
- for i in range(len(data)):
- # Make a link from the new output.
- new_link = node.outputs[output+"."+str(i).zfill(4)].connect(to_node, link.to_socket)
- array_link_init_hierarchy(new_link)
- link.die()
- def zero_radius_error_message(node, curve):
- return f"ERROR: cannot get matrix from zero-radius curve point "\
- "in curve object: {curve.name} for node: {node}. "\
- "This is a limitation of Mantis (For now). Please inspect the curve and ensure "\
- "that each curve point has a radius greater than 0. Sometimes, this error is " \
- "caused by drivers. "
- def bpy_object_get_guarded(get_name, node=None):
- result=None
- if not isinstance(get_name, str):
- raise RuntimeError(f"Cannot get object for {node} because the """
- f"requested name is not a string, but {type(get_name)}. ")
- try:
- import bpy
- result = bpy.data.objects.get(get_name)
- except SystemError:
- raise SystemError(f"184 {node} Cannot get object, {get_name}"
- " please report this as a bug.")
- return result
- #*#-------------------------------#++#-------------------------------#*#
- # B A S E C L A S S E S
- #*#-------------------------------#++#-------------------------------#*#
- class SimpleInputNode(MantisNode):
- def __init__(self, signature, base_tree, socket_templates=[]):
- super().__init__(signature, base_tree, socket_templates)
- self.node_type = 'UTILITY'
- self.prepared, self.executed = True, True
- #*#-------------------------------#++#-------------------------------#*#
- # U T I L I T Y N O D E S
- #*#-------------------------------#++#-------------------------------#*#
- class InputFloat(SimpleInputNode):
- '''A node representing float input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = ["Float Input"]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- class InputIntNode(SimpleInputNode):
- '''A node representing integer input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = ["Integer"]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
-
- class InputVector(SimpleInputNode):
- '''A node representing vector input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- class InputBoolean(SimpleInputNode):
- '''A node representing boolean input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- class InputBooleanThreeTuple(SimpleInputNode):
- '''A node representing a tuple of three booleans'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
-
- class InputRotationOrder(SimpleInputNode):
- '''A node representing string input for rotation order'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
-
- class InputTransformSpace(SimpleInputNode):
- '''A node representing string input for transform space'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
-
- def evaluate_input(self, input_name):
- return self.parameters[""]
-
- class InputString(SimpleInputNode):
- '''A node representing string input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [""]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- class InputMatrix(SimpleInputNode):
- '''A node representing axis-angle quaternion input'''
-
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = ["Matrix",]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- class UtilityMatrixFromCurve(MantisNode):
- '''Get a matrix from a curve'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, MatrixFromCurveSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Matrix
- import bpy
- mat = Matrix.Identity(4)
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- if not curve:
- prRed(f"WARN: No curve found for {self}. Using an identity matrix instead.")
- mat[3][3] = 1.0
- elif curve.type != "CURVE":
- prRed(f"WARN: Object {curve.name} is not a curve. Using an identity matrix instead.")
- mat[3][3] = 1.0
- else:
- if bContext is None: bContext = bpy.context # is this wise?
- m = get_mesh_from_curve(curve.name, self.base_tree.execution_id, bContext)
- from .utilities import data_from_ribbon_mesh
- #
- num_divisions = self.evaluate_input("Total Divisions")
- if num_divisions <= 0:
- raise GraphError("The number of divisions in the curve must be 1 or greater.")
- m_index = self.evaluate_input("Matrix Index")
- if m_index >= num_divisions:
- prRed(m_index, num_divisions)
- raise GraphError(f"{self} tried to get a matrix-index greater the total number of divisions."
- "The matrix index starts at 0. You're probably off by +1.")
- spline_index = self.evaluate_input("Spline Index")
- if spline_index > len(curve.data.splines)-1:
- raise GraphError(f"{self} is attempting to read from a spline in {curve.name} that does not exist."
- " Try and reduce the value of Spline Index.")
- splines_factors = [ [] for i in range (spline_index)]
- factors = [1/num_divisions*m_index, 1/num_divisions*(m_index+1)]
- splines_factors.append(factors)
- data = data_from_ribbon_mesh(m, splines_factors, curve.matrix_world)
- if data[spline_index][1][0] < FLOAT_EPSILON: # radius is None:
- raise RuntimeError(zero_radius_error_message(self, curve))
- head=data[spline_index][0][0]
- tail= data[spline_index][0][1]
- axis = (tail-head).normalized()
- if axis.length_squared < FLOAT_EPSILON:
- raise RuntimeError(f"Failed to read the curve {curve.name}.")
- normal=data[spline_index][2][0]
- # make sure the normal is perpendicular to the tail
- from .utilities import make_perpendicular
- normal = make_perpendicular(axis, normal)
- mat = matrix_from_head_tail(head, tail, normal)
- # this is in world space... let's just convert it back
- mat.translation = head - curve.location
- # TODO HACK TODO
- # all the nodes should work in world-space, and it should be the responsibility
- # of the xForm node to convert!
- self.parameters["Matrix"] = mat
- self.prepared = True
- self.executed = True
-
- def bFinalize(self, bContext=None):
- cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)
- class UtilityPointFromCurve(MantisNode):
- '''Get a point from a curve'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, PointFromCurveSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- import bpy
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- if not curve:
- raise RuntimeError(f"No curve found for {self}.")
- elif curve.type != "CURVE":
- raise GraphError(f"ERROR: Object {curve.name} is not a curve.")
- else:
- if bContext is None: bContext = bpy.context # is this wise?
- m = get_mesh_from_curve(curve.name, self.base_tree.execution_id, bContext)
- from .utilities import data_from_ribbon_mesh
- #
- num_divisions = 1
- spline_index = self.evaluate_input("Spline Index")
- splines_factors = [ [] for i in range (spline_index)]
- factors = [self.evaluate_input("Factor")]
- splines_factors.append(factors)
- data = data_from_ribbon_mesh(m, splines_factors, curve.matrix_world)
- p = data[spline_index][0][0] - curve.location
- self.parameters["Point"] = p
- self.prepared, self.executed = True, True
-
- def bFinalize(self, bContext=None):
- cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)
- class UtilityMatricesFromCurve(MantisNode):
- '''Get matrices from a curve'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, MatricesFromCurveSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- import time
- # start_time = time.time()
- #
- from mathutils import Matrix
- import bpy
- m = Matrix.Identity(4)
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- if not curve:
- prRed(f"WARN: No curve found for {self}. Using an identity matrix instead.")
- m[3][3] = 1.0
- elif curve.type != "CURVE":
- prRed(f"WARN: Object {curve.name} is not a curve. Using an identity matrix instead.")
- m[3][3] = 1.0
- else:
- if bContext is None: bContext = bpy.context # is this wise?
- mesh = get_mesh_from_curve(curve.name, self.base_tree.execution_id, bContext)
- from .utilities import data_from_ribbon_mesh
- num_divisions = self.evaluate_input("Total Divisions")
- spline_index = self.evaluate_input("Spline Index")
- splines_factors = [ [] for i in range (spline_index)]
- factors = [0.0] + [(1/num_divisions*(i+1)) for i in range(num_divisions)]
- splines_factors.append(factors)
- data = data_from_ribbon_mesh(mesh, splines_factors, curve.matrix_world)
- # [spline_index][points,tangents,normals][datapoint_index]
- from .utilities import make_perpendicular
- matrices=[]
- for i in range(num_divisions):
- if data[spline_index][1][i] < FLOAT_EPSILON: # radius is None:
- raise RuntimeError(zero_radius_error_message(self, curve))
- m = matrix_from_head_tail (
- data[spline_index][0][i], data[spline_index][0][i+1],
- make_perpendicular((data[spline_index][0][i+1]-data[spline_index][0][i]).normalized(), data[spline_index][2][i]),)
- m.translation = data[spline_index][0][i] - curve.location
- matrices.append(m)
- for link in self.outputs["Matrices"].links:
- for i, m in enumerate(matrices):
- name = "Matrix"+str(i).zfill(4)
- if not (out := self.outputs.get(name)): # reuse them if there are multiple links.
- out = self.outputs[name] = NodeSocket(name = name, node=self)
- c = out.connect(link.to_node, link.to_socket)
- # prOrange(c)
- self.parameters[name] = m
- # print (mesh)
- link.die()
- self.prepared = True
- self.executed = True
- # prGreen(f"Matrices from curves took {time.time() - start_time} seconds.")
-
- def bFinalize(self, bContext=None):
- import bpy
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- m_name = curve.name+'.'+self.base_tree.execution_id
- if (mesh := bpy.data.meshes.get(m_name)):
- prGreen(f"Freeing mesh data {m_name}...")
- bpy.data.meshes.remove(mesh)
- class UtilityNumberOfCurveSegments(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Curve" ,
- "Spline Index" ,
- ]
- outputs = [
- "Number of Segments" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- spline = curve.data.splines[self.evaluate_input("Spline Index")]
- if spline.type == "BEZIER":
- self.parameters["Number of Segments"] = len(spline.bezier_points)-1
- else:
- self.parameters["Number of Segments"] = len(spline.points)-1
- self.prepared = True
- self.executed = True
- class UtilityNumberOfSplines(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, NumberOfSplinesSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- self.parameters["Number of Splines"] = len(curve.data.splines)
- self.prepared, self.executed = True, True
- class UtilityMatrixFromCurveSegment(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, MatrixFromCurveSegmentSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- import bpy
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- if not curve:
- raise RuntimeError(f"No curve found for {self}.")
- elif curve.type != "CURVE":
- raise GraphError(f"ERROR: Object {curve.name} is not a curve.")
- else:
- if bContext is None: bContext = bpy.context # is this wise?
- m = get_mesh_from_curve(curve.name, self.base_tree.execution_id, bContext)
- from .utilities import data_from_ribbon_mesh
- # this section is dumb, but it is because the data_from_ribbon_mesh
- # function is designed to pull data from many splines at once (for optimization)
- # so we have to give it empty splines for each one we skip.
- # TODO: Refactor this to make it so I can select spline index
- spline_index = self.evaluate_input("Spline Index")
- spline = curve.data.splines[spline_index]
- splines_factors = [ [] for i in range (spline_index)]
- factors = [0.0]
- points = spline.bezier_points if spline.type == 'BEZIER' else spline.points
- total_length=0.0
- for i in range(len(points)-1):
- total_length+= (seg_length := (points[i+1].co - points[i].co).length)
- factors.append(seg_length)
- prev_length = 0.0
- for i in range(len(factors)):
- factors[i] = prev_length+factors[i]/total_length
- prev_length=factors[i]
- # Why does this happen? Floating point error?
- if factors[i]>1.0: factors[i] = 1.0
- splines_factors.append(factors)
- #
- data = data_from_ribbon_mesh(m, splines_factors, curve.matrix_world)
- segment_index = self.evaluate_input("Segment Index")
- if data[spline_index][1][segment_index] < FLOAT_EPSILON: # radius is None:
- raise RuntimeError(zero_radius_error_message(self, curve))
- head=data[spline_index][0][segment_index]
- tail= data[spline_index][0][segment_index+1]
- axis = (tail-head).normalized()
- normal=data[spline_index][2][segment_index]
- # make sure the normal is perpendicular to the tail
- from .utilities import make_perpendicular
- normal = make_perpendicular(axis, normal)
- m = matrix_from_head_tail(head, tail, normal)
- m.translation = head - curve.location
- self.parameters["Matrix"] = m
- self.prepared, self.executed = True, True
-
- def bFinalize(self, bContext=None):
- cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)
- class UtilityGetCurvePoint(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, GetCurvePointSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext=None):
- import bpy
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- if not curve:
- raise RuntimeError(f"No curve found for {self}.")
- elif curve.type != "CURVE":
- raise GraphError(f"ERROR: Object {curve.name} is not a curve.")
- spline = curve.data.splines[self.evaluate_input("Spline Index")]
- if spline.type == 'BEZIER':
- bez_pt = spline.bezier_points[self.evaluate_input("Index")]
- self.parameters["Point"]=bez_pt.co
- self.parameters["Left Handle"]=bez_pt.handle_left
- self.parameters["Right Handle"]=bez_pt.handle_right
- else:
- pt = spline.points[self.evaluate_input("Index")]
- self.parameters["Point"]=(pt.co[0], pt.co[1], pt.co[2])
- self.prepared, self.executed = True, True
- class UtilityGetNearestFactorOnCurve(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, GetNearestFactorOnCurveSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- import bpy
- curve_name = self.evaluate_input("Curve")
- curve = bpy_object_get_guarded( curve_name, self)
- if not curve:
- raise RuntimeError(f"No curve found for {self}.")
- elif curve.type != "CURVE":
- raise GraphError(f"ERROR: Object {curve.name} is not a curve.")
- else:
- if bContext is None: bContext = bpy.context # is this wise?
- m = get_mesh_from_curve(curve.name,
- self.base_tree.execution_id,
- bContext, ribbon=False)
- # this is confusing but I am not re-writing these old functions
- from .utilities import FindNearestPointOnWireMesh as nearest_point
- spline_index = self.evaluate_input("Spline Index")
- ref_pt = self.evaluate_input("Reference Point")
- splines_points = [ [] for i in range (spline_index)]
- splines_points.append([ref_pt])
- pt = nearest_point(m, splines_points)[spline_index][0]
- self.parameters["Factor"] = pt
- self.prepared, self.executed = True, True
- class UtilityKDChoosePoint(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Reference Point" ,
- "Points" ,
- "Number to Find" ,
- ]
- outputs = [
- "Result Point" ,
- "Result Index" ,
- "Result Distance" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- self.rerouted=[]
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- points= []
- ref_point = self.evaluate_input('Reference Point')
- num_points = self.evaluate_input('Number to Find')
- for i, l in enumerate(self.inputs['Points'].links):
- pt = self.evaluate_input('Points', i)
- points.append(pt)
- if not isinstance(pt, Vector):
- prRed(f"Cannot get point from {l.from_node} for {self}")
- assert ref_point is not None, wrapRed(f"Reference Point {ref_point} is invalid in node {self}")
- result = kd_find(self, points, ref_point, num_points)
- indices = [ found_point[1] for found_point in result ]
- distances = [ found_point[2] for found_point in result ]
- array_choose_relink(self, indices, "Points", "Result Point")
- array_choose_data(self, indices, "Result Index")
- array_choose_data(self, distances, "Result Distance")
- self.prepared, self.executed = True, True
- class UtilityKDChooseXForm(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Reference Point" ,
- "xForm Nodes" ,
- "Get Point Head/Tail" ,
- "Number to Find" ,
- ]
- outputs = [
- "Result xForm" ,
- "Result Index" ,
- "Result Distance" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- self.rerouted=[]
- def bPrepare(self, bContext = None,):
- if len(self.hierarchy_dependencies)==0 and len(self.hierarchy_connections)==0 and \
- len(self.connections)==0 and len(self.dependencies)==0:
- self.prepared, self.executed = True, True
- return #Either it is already done or it doesn't matter.
- from mathutils import Vector
- points= []
- ref_point = self.evaluate_input('Reference Point')
- num_points = self.evaluate_input('Number to Find')
- for i, l in enumerate(self.inputs['xForm Nodes'].links):
- matrix = l.from_node.evaluate_input('Matrix')
- if matrix is None:
- raise GraphError(f"Cannot get point from {l.from_node} for {self}. Does it have a matrix?")
- pt = matrix.translation
- if head_tail := self.evaluate_input("Get Point Head/Tail"):
- # get the Y-axis of the basis, assume it is normalized
- y_axis = Vector((matrix[0][1],matrix[1][1], matrix[2][1]))
- pt = pt.lerp(pt+y_axis*matrix[3][3], head_tail)
- points.append(pt)
- if not isinstance(pt, Vector):
- prRed(f"Cannot get point from {l.from_node} for {self}")
- assert ref_point is not None, wrapRed(f"Reference Point {ref_point} is invalid in node {self}")
- result = kd_find(self, points, ref_point, num_points)
- indices = [ found_point[1] for found_point in result ]
- distances = [ found_point[2] for found_point in result ]
- array_choose_relink(self, indices, "xForm Nodes", "Result xForm")
- array_choose_data(self, indices, "Result Index")
- array_choose_data(self, distances, "Result Distance")
- self.prepared, self.executed = True, True
- class UtilityMetaRig(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Meta-Armature" ,
- "Meta-Bone" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- #kinda clumsy, whatever
- import bpy
- from mathutils import Matrix
- m = Matrix.Identity(4)
-
- meta_rig = self.evaluate_input("Meta-Armature")
- if meta_rig is None:
- raise RuntimeError("Invalid input for Meta-Armature.")
- meta_bone = self.evaluate_input("Meta-Bone")
- if meta_rig is None or meta_bone is None:
- raise RuntimeError("Invalid input for Meta-Bone.")
-
- if meta_rig:
- if ( armOb := bpy.data.objects.get(meta_rig) ):
- m = armOb.matrix_world
- if ( b := armOb.data.bones.get(meta_bone)):
- # calculate the correct object-space matrix
- m = Matrix.Identity(3)
- bones = [] # from the last ancestor, mult the matrices until we get to b
- while (b): bones.append(b); b = b.parent
- while (bones): b = bones.pop(); m = m @ b.matrix
- m = Matrix.Translation(b.head_local) @ m.to_4x4()
- #
- m[3][3] = b.length # this is where I arbitrarily decided to store length
- # else:
- # prRed("no bone for MetaRig node ", self)
- else:
- raise RuntimeError(wrapRed(f"No meta-rig input for MetaRig node {self}"))
-
- self.parameters["Matrix"] = m
- self.prepared = True
- self.executed = True
- class UtilityBoneProperties(SimpleInputNode):
- '''A node representing a bone's gettable properties'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- outputs = [
- "matrix" ,
- "matrix_local" ,
- "matrix_basis" ,
- "head" ,
- "tail" ,
- "length" ,
- "rotation" ,
- "location" ,
- "scale" ,
- ]
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- def fill_parameters(self, prototype=None):
- return
-
- # TODO this should probably be moved to Links
- class UtilityDriverVariable(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Variable Type" ,
- "Property" ,
- "Property Index" ,
- "Evaluation Space",
- "Rotation Mode" ,
- "xForm 1" ,
- "xForm 2" ,
- ]
- outputs = [
- "Driver Variable",
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "DRIVER" # MUST be run in Pose mode
- self.prepared = True
-
- def reset_execution(self):
- super().reset_execution()
- # clear this to ensure there are no stale reference pointers
- self.parameters["Driver Variable"] = None
- self.prepared=True
-
- def evaluate_input(self, input_name):
- if input_name == 'Property':
- if self.inputs.get('Property'):
- if self.inputs['Property'].is_linked:
- # get the name instead...
- trace = trace_single_line(self, input_name)
- return trace[1].name # the name of the socket
- return self.parameters["Property"]
- return super().evaluate_input(input_name)
-
- def GetxForm(self, index=1):
- trace = trace_single_line(self, "xForm 1" if index == 1 else "xForm 2")
- for node in trace[0]:
- if (node.__class__ in [xFormArmature, xFormBone]):
- return node #this will fetch the first one, that's good!
- return None
- def bExecute(self, bContext = None,):
- prepare_parameters(self)
- #prPurple ("Executing Driver Variable Node")
- xF1 = self.GetxForm()
- xF2 = self.GetxForm(index=2)
- # kinda clumsy
- xForm1, xForm2 = None, None
- if xF1 : xForm1 = xF1.bGetObject()
- if xF2 : xForm2 = xF2.bGetObject()
- v_type = self.evaluate_input("Variable Type")
- i = self.evaluate_input("Property Index"); dVarChannel = ""
- if not isinstance(i, (int, float)):
- raise RuntimeError(f" {self} has invalid input for \"Property Index\".")
- if (i >= 0): #negative values will use the vector property.
- if self.evaluate_input("Property") == 'location':
- if i == 0: dVarChannel = "LOC_X"
- elif i == 1: dVarChannel = "LOC_Y"
- elif i == 2: dVarChannel = "LOC_Z"
- else: raise RuntimeError("Invalid property index for %s" % self)
- if self.evaluate_input("Property") == 'rotation':
- if i == 0: dVarChannel = "ROT_X"
- elif i == 1: dVarChannel = "ROT_Y"
- elif i == 2: dVarChannel = "ROT_Z"
- elif i == 3: dVarChannel = "ROT_W"
- else: raise RuntimeError("Invalid property index for %s" % self)
- if self.evaluate_input("Property") == 'scale':
- if i == 0: dVarChannel = "SCALE_X"
- elif i == 1: dVarChannel = "SCALE_Y"
- elif i == 2: dVarChannel = "SCALE_Z"
- elif i == 3: dVarChannel = "SCALE_AVG"
- else: raise RuntimeError("Invalid property index for %s" % self)
- if self.evaluate_input("Property") == 'scale_average':
- dVarChannel = "SCALE_AVG"
- if dVarChannel: v_type = "TRANSFORMS"
-
- my_var = {
- "owner" : xForm1, # will be filled in by Driver
- "prop" : self.evaluate_input("Property"), # will be filled in by Driver
- "type" : v_type,
- "space" : self.evaluate_input("Evaluation Space"),
- "rotation_mode" : self.evaluate_input("Rotation Mode"),
- "xForm 1" : xForm1,#self.GetxForm(index = 1),
- "xForm 2" : xForm2,#self.GetxForm(index = 2),
- "channel" : dVarChannel,}
-
- self.parameters["Driver Variable"] = my_var
- self.executed = True
-
- class UtilityKeyframe(MantisNode):
- '''A node representing a keyframe for a F-Curve'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Frame" ,
- "Value" ,
- ]
- outputs = [
- "Keyframe" ,
- ]
- additional_parameters = {"Keyframe":{}}
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters( additional_parameters=additional_parameters)
- self.node_type = "DRIVER" # MUST be run in Pose mode
- setup_custom_props(self)
- def bPrepare(self, bContext = None,):
- key = self.parameters["Keyframe"]
- from mathutils import Vector
- key["co"]= Vector( (self.evaluate_input("Frame"), self.evaluate_input("Value"),))
- key["type"]="GENERATED"
- key["interpolation"] = "LINEAR"
- # eventually this will have the right data, TODO
- # self.parameters["Keyframe"] = key
- self.prepared = True
- self.executed = True
- class UtilityFCurve(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Extrapolation Mode",
- ]
- outputs = [
- "fCurve",
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- setup_custom_props(self)
- self.prepared = True
-
- def reset_execution(self):
- super().reset_execution()
- self.prepared=True
- def evaluate_input(self, input_name):
- return super().evaluate_input(input_name)
- def bExecute(self, bContext = None,):
- prepare_parameters(self)
- extrap_mode = self.evaluate_input("Extrapolation Mode")
- keys = [] # ugly but whatever
- #['amplitude', 'back', 'bl_rna', 'co', 'co_ui', 'easing', 'handle_left', 'handle_left_type', 'handle_right', 'handle_right_type',
- # 'interpolation', 'period', 'rna_type', 'select_control_point', 'select_left_handle', 'select_right_handle', 'type']
- for k in self.inputs.keys():
- if k == 'Extrapolation Mode' : continue
- # print (self.inputs[k])
- if (key := self.evaluate_input(k)) is None:
- prOrange(f"WARN: No keyframe connected to {self}:{k}. Skipping Link.")
- else:
- keys.append(key)
- if len(keys) <1:
- prOrange(f"WARN: no keys in fCurve {self}.")
- keys.append(extrap_mode)
- self.parameters["fCurve"] = keys
- self.executed = True
- #TODO make the fCurve data a data class instead of a dict
- class UtilityDriver(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Driver Type" ,
- "Expression" ,
- "fCurve" ,
- ]
- outputs = [
- "Driver",
- ]
- from .drivers import MantisDriver
- additional_parameters = {
- "Driver":MantisDriver(),
- }
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters(additional_parameters=additional_parameters)
- self.node_type = "DRIVER" # MUST be run in Pose mode
- setup_custom_props(self)
- self.prepared = True
-
- def reset_execution(self):
- super().reset_execution()
- from .drivers import MantisDriver
- self.parameters["Driver"]=MantisDriver()
- self.prepared=True
-
- def bExecute(self, bContext = None,):
- prepare_parameters(self)
- from .drivers import MantisDriver
- #prPurple("Executing Driver Node")
- my_vars = []
- keys = self.evaluate_input("fCurve")
- if keys is None or len(keys) <2:
- prWhite(f"INFO: no fCurve connected to {self}; using default fCurve.")
- from mathutils import Vector
- keys = [
- {"co":Vector( (0, 0,)), "type":"GENERATED", "interpolation":"LINEAR" },
- {"co":Vector( (1, 1,)), "type":"GENERATED", "interpolation":"LINEAR" },
- "CONSTANT",]
- for inp in list(self.inputs.keys() )[3:]:
- if (new_var := self.evaluate_input(inp)):
- new_var["name"] = inp
- my_vars.append(new_var)
- else:
- raise RuntimeError(f"Failed to initialize Driver variable for {self}")
- my_driver ={ "owner" : None,
- "prop" : None, # will be filled out in the node that uses the driver
- "expression" : self.evaluate_input("Expression"),
- "ind" : -1, # same here
- "type" : self.evaluate_input("Driver Type"),
- "vars" : my_vars,
- "keys" : keys[:-1],
- "extrapolation" : keys[-1] }
-
- my_driver = MantisDriver(my_driver)
-
- self.parameters["Driver"].update(my_driver)
- print("Initializing driver %s " % (wrapPurple(self.__repr__())) )
- self.executed = True
- class UtilitySwitch(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = {
- "Parameter" ,
- "Parameter Index" ,
- "Invert Switch" ,
- }
- outputs = [
- "Driver",
- ]
- from .drivers import MantisDriver
- additional_parameters = {
- "Driver":MantisDriver(),
- }
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters(additional_parameters=additional_parameters)
- self.node_type = "DRIVER" # MUST be run in Pose mode
- self.prepared = True
- def evaluate_input(self, input_name):
- if input_name == 'Parameter':
- if self.inputs['Parameter'].is_connected:
- trace = trace_single_line(self, input_name)
- return trace[1].name # the name of the socket
- return self.parameters["Parameter"]
- return super().evaluate_input(input_name)
- def GetxForm(self,):
- trace = trace_single_line(self, "Parameter" )
- for node in trace[0]:
- if (node.__class__ in [xFormArmature, xFormBone]):
- return node #this will fetch the first one, that's good!
- return None
-
- def reset_execution(self):
- super().reset_execution()
- from .drivers import MantisDriver
- self.parameters["Driver"]=MantisDriver()
- self.prepared=True
- def bExecute(self, bContext = None,):
- #prepare_parameters(self)
- #prPurple ("Executing Switch Node")
- xForm = self.GetxForm()
- if xForm : xForm = xForm.bGetObject()
- if not xForm:
- raise RuntimeError("Could not evaluate xForm for %s" % self)
- from .drivers import MantisDriver
- my_driver ={ "owner" : None,
- "prop" : None, # will be filled out in the node that uses the driver
- "ind" : -1, # same here
- "type" : "SCRIPTED",
- "vars" : [ { "owner" : xForm,
- "prop" : self.evaluate_input("Parameter"),
- "name" : "a",
- "type" : "SINGLE_PROP", } ],
- "keys" : [ { "co":(0,0),
- "interpolation": "LINEAR",
- "type":"KEYFRAME",}, #display type
- { "co":(1,1),
- "interpolation": "LINEAR",
- "type":"KEYFRAME",},],
- "extrapolation": 'CONSTANT', }
- my_driver ["expression"] = "a"
-
- my_driver = MantisDriver(my_driver)
- # this makes it so I can check for type later!
-
- if self.evaluate_input("Invert Switch") == True:
- my_driver ["expression"] = "1 - a"
-
- # this way, regardless of what order things are handled, the
- # driver is sent to the next node.
- # In the case of some drivers, the parameter may be sent out
- # before it's filled in (because there is a circular dependency)
- # I want to support this behaviour because Blender supports it.
- # We do not make a copy. We update the driver, so that
- # the same instance is filled out.
- self.parameters["Driver"].update(my_driver)
- print("Initializing driver %s " % (wrapPurple(self.__repr__())) )
- self.executed = True
- class UtilityCombineThreeBool(MantisNode):
- '''A node for combining three booleans into a boolean three-tuple'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "X" ,
- "Y" ,
- "Z" ,
- ]
- outputs = [
- "Three-Bool",
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def reset_execution(self): # need to make sure any references are deleted
- super().reset_execution() # so we prepare the node again to reset them
- if self.parameters["Three-Bool"] is not None:
- for param in self.parameters["Three-Bool"].values():
- if isinstance(param, dict):
- self.prepared=False; break
- def bPrepare(self, bContext = None,):
- self.parameters["Three-Bool"] = (
- self.evaluate_input("X"),
- self.evaluate_input("Y"),
- self.evaluate_input("Z"), )
- self.prepared = True
- self.executed = True
- # Note this is a copy of the above. This needs to be de-duplicated.
- class UtilityCombineVector(MantisNode):
- '''A node for combining three floats into a vector'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- super().__init__(signature, base_tree)
- inputs = [
- "X" ,
- "Y" ,
- "Z" ,
- ]
- outputs = [
- "Vector",
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def reset_execution(self): # need to make sure any references are deleted
- super().reset_execution() # so we prepare the node again to reset them
- if self.parameters["Vector"] is not None:
- for param in self.parameters["Vector"]:
- if isinstance(param, dict):
- self.prepared=False; break
-
- def bPrepare(self, bContext = None,):
- #prPurple("Executing CombineVector Node")
- prepare_parameters(self)
- self.parameters["Vector"] = (
- self.evaluate_input("X"),
- self.evaluate_input("Y"),
- self.evaluate_input("Z"), )
- self.prepared, self.executed = True, True
-
- class UtilitySeparateVector(MantisNode):
- '''A node for separating a vector into three floats'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Vector"
- ]
- outputs = [
- "X" ,
- "Y" ,
- "Z" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- self.parameters["X"] = self.evaluate_input("Vector")[0]
- self.parameters["Y"] = self.evaluate_input("Vector")[1]
- self.parameters["Z"] = self.evaluate_input("Vector")[2]
- self.prepared, self.executed = True, True
- class UtilityCatStrings(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "String_1" ,
- "String_2" ,
- ]
- outputs = [
- "OutputString" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- self.parameters["OutputString"] = self.evaluate_input("String_1")+self.evaluate_input("String_2")
- self.prepared, self.executed = True, True
- # TODO move this to the Xform file
- class InputExistingGeometryObject(MantisNode):
- '''A node representing an existing object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Name" ,
- ]
- outputs = [
- "Object" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "XFORM"
-
- def reset_execution(self):
- super().reset_execution()
- self.prepared=False
- def bPrepare(self, bContext=None):
- from bpy import data
- ob = None
- if name := self.evaluate_input("Name"):
- ob= data.objects.get( name )
- if ob is None and name:
- prRed(f"No object found with name {name} in {self}")
- self.bObject=ob
- self.prepared, self.executed = True, True
-
- def bGetObject(self, mode=''):
- return self.bObject
- class InputExistingGeometryData(MantisNode):
- '''A node representing existing object data'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Name" ,
- ]
- outputs = [
- "Geometry" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- self.prepared = True; self.executed = True
- def reset_execution(self):
- super().reset_execution()
- self.prepared, self.executed = True, True
- # the mode argument is only for interface consistency
- def bGetObject(self, mode=''):
- from bpy import data
- # first try Curve, then try Mesh
- bObject = data.curves.get(self.evaluate_input("Name"))
- if not bObject:
- bObject = data.meshes.get(self.evaluate_input("Name"))
- if bObject is None:
- raise RuntimeError(f"Could not find a mesh or curve datablock named \"{self.evaluate_input('Name')}\" for node {self}")
- return bObject
- class UtilityGeometryOfXForm(MantisNode):
- '''A node representing existing object data'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "xForm" ,
- ]
- outputs = [
- "Geometry" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- self.prepared = True
- self.executed = True
- def reset_execution(self):
- super().reset_execution()
- self.prepared, self.executed = True, True
- # mode for interface consistency
- def bGetObject(self, mode=''):
- if not (self.inputs.get('xForm') and self.inputs['xForm'].links):
- prOrange(f"WARN: Cannot retrieve data from {self}, there is no xForm node connected.")
- return None
- xf = self.inputs["xForm"].links[0].from_node
- if xf.node_type == 'XFORM':
- xf_ob = xf.bGetObject()
- if (xf_ob is not None) and xf_ob.type in ['MESH', 'CURVE']:
- return xf_ob.data
- prOrange(f"WARN: Cannot retrieve data from {self}, the connected xForm is not a mesh or curve.")
- return None
- class UtilityNameOfXForm(MantisNode):
- '''A node representing existing object data'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "xForm" ,
- ]
- outputs = [
- "Name" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- # mode for interface consistency
- def bPrepare(self, bContext = None,):
- if not (self.inputs.get('xForm') and self.inputs['xForm'].links):
- raise RuntimeError( f"WARN: Cannot retrieve data from {self},"
- " there is no xForm node connected.")
- xf = self.inputs["xForm"].links[0].from_node
- self.parameters["Name"] = xf.evaluate_input('Name')
- self.prepared, self.executed = True, True
- class UtilityGetBoneLength(MantisNode):
- '''A node to get the length of a bone matrix'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Bone Matrix" ,
- ]
- outputs = [
- "Bone Length" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- if (l := self.evaluate_input("Bone Matrix")) is not None:
- self.parameters["Bone Length"] = l[3][3]
- else:
- other = self.inputs["Bone Matrix"].links[0].from_node
- raise RuntimeError(f"Cannot get matrix for {self} from {other}")
- self.prepared, self.executed = True, True
- class UtilityPointFromBoneMatrix(MantisNode):
- '''A node representing an armature object'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Bone Matrix" ,
- "Head/Tail" ,
- ]
- outputs = [
- "Point" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- # TODO: find out why this is sometimes not ready at bPrepare phase
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- matrix = self.evaluate_input("Bone Matrix")
- head, rotation, _scale = matrix.copy().decompose()
- tail = head.copy() + (rotation @ Vector((0,1,0)))*matrix[3][3]
- self.parameters["Point"] = head.lerp(tail, self.evaluate_input("Head/Tail"))
- self.prepared, self.executed = True, True
- class UtilitySetBoneLength(MantisNode):
- '''Sets the length of a Bone's matrix'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Bone Matrix" ,
- "Length" ,
- ]
- outputs = [
- "Bone Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- if matrix := self.evaluate_input("Bone Matrix"):
- matrix = matrix.copy()
- # print (self.inputs["Length"].links)
- matrix[3][3] = self.evaluate_input("Length")
- self.parameters["Length"] = self.evaluate_input("Length")
- self.parameters["Bone Matrix"] = matrix
- else:
- raise RuntimeError(f"Cannot get matrix for {self}")
- self.prepared, self.executed = True, True
- class UtilityMatrixSetLocation(MantisNode):
- '''Sets the location of a matrix'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Matrix" ,
- "Location" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- if matrix := self.evaluate_input("Matrix"):
- matrix = matrix.copy()
- # print (self.inputs["Length"].links)
- loc = self.evaluate_input("Location")
- matrix[0][3] = loc[0]; matrix[1][3] = loc[1]; matrix[2][3] = loc[2]
- self.parameters["Matrix"] = matrix
- self.prepared, self.executed = True, True
- class UtilityMatrixGetLocation(MantisNode):
- '''Gets the location of a matrix'''
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Matrix" ,
- ]
- outputs = [
- "Location" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- if matrix := self.evaluate_input("Matrix"):
- self.parameters["Location"] = matrix.to_translation()
- self.prepared = True; self.executed = True
- class UtilityMatrixFromXForm(MantisNode):
- """Returns the matrix of the given xForm node."""
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "xForm" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.node_type = "UTILITY"
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
-
- def GetxForm(self):
- trace = trace_single_line(self, "xForm")
- for node in trace[0]:
- if (node.node_type == 'XFORM'):
- return node
- raise GraphError("%s is not connected to an xForm" % self)
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector, Matrix
- self.parameters["Matrix"] = Matrix.Identity(4)
- if matrix := self.GetxForm().parameters.get("Matrix"):
- self.parameters["Matrix"] = matrix.copy()
- elif hasattr(self.GetxForm().bObject, "matrix"):
- self.parameters["Matrix"] = self.GetxForm().bObject.matrix.copy()
- elif hasattr(self.GetxForm().bObject, "matrix_world"):
- self.parameters["Matrix"] = self.GetxForm().bObject.matrix_world.copy()
- else:
- prRed(f"Could not find matrix for {self} - check if the referenced object exists.")
- self.prepared = True; self.executed = True
- class UtilityAxesFromMatrix(MantisNode):
- """Returns the axes of the given matrix."""
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Matrix" ,
- ]
- outputs = [
- "X Axis" ,
- "Y Axis" ,
- "Z Axis" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
-
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- if matrix := self.evaluate_input("Matrix"):
- matrix= matrix.copy().to_3x3(); matrix.transpose()
- self.parameters['X Axis'] = matrix[0]
- self.parameters['Y Axis'] = matrix[1]
- self.parameters['Z Axis'] = matrix[2]
- self.prepared = True; self.executed = True
- class UtilityBoneMatrixHeadTailFlip(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Bone Matrix" ,
- ]
- outputs = [
- "Bone Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Vector, Matrix, Quaternion
- from bpy.types import Bone
- if matrix := self.evaluate_input("Bone Matrix"):
- axis, roll = Bone.AxisRollFromMatrix(matrix.to_3x3())
- new_mat = Bone.MatrixFromAxisRoll(-1*axis, roll)
- length = matrix[3][3]
- new_mat.resize_4x4() # last column contains
- new_mat[0][3] = matrix[0][3] + axis[0]*length # x location
- new_mat[1][3] = matrix[1][3] + axis[1]*length # y location
- new_mat[2][3] = matrix[2][3] + axis[2]*length # z location
- new_mat[3][3] = length # length
- self.parameters["Bone Matrix"] = new_mat
- self.prepared, self.executed = True, True
- class UtilityMatrixTransform(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Matrix 1" ,
- "Matrix 2" ,
- ]
- outputs = [
- "Out Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- mat1 = self.evaluate_input("Matrix 1"); mat2 = self.evaluate_input("Matrix 2")
- if mat1 and mat2:
- mat1copy = mat1.copy()
- self.parameters["Out Matrix"] = mat2 @ mat1copy
- self.parameters["Out Matrix"].translation = mat1copy.to_translation()+ mat2.to_translation()
- else:
- raise RuntimeError(wrapRed(f"Node {self} did not receive all matrix inputs..."
- " found input 1? {mat1 is not None}, 2? {mat2 is not None}"))
- self.prepared, self.executed = True, True
- class UtilityMatrixInvert(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, MatrixInvertSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Vector
- mat1 = self.evaluate_input("Matrix 1")
- if mat1:
- mat1copy = mat1.copy()
- try:
- self.parameters["Matrix"] = mat1copy.inverted()
- except ValueError as e:
- prRed(f"ERROR: {self}: The matrix cannot be inverted."); prOrange(mat1)
- raise e
- else:
- raise RuntimeError(wrapRed(f"Node {self} did not receive all matrix inputs..."
- " found input 1? {mat1 is not None}"))
- self.prepared, self.executed = True, True
- class UtilityMatrixCompose(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, MatrixComposeSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Matrix
- matrix= Matrix.Identity(3)
- matrix[0] = self.evaluate_input('X Basis Vector')
- matrix[1] = self.evaluate_input('Y Basis Vector')
- matrix[2] = self.evaluate_input('Z Basis Vector')
- matrix.transpose(); matrix=matrix.to_4x4()
- matrix.translation = self.evaluate_input('Translation')
- self.parameters['Matrix']=matrix
- self.prepared = True; self.executed = True
- class UtilityMatrixAlignRoll(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, MatrixAlignRollSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Vector, Matrix
- align_axis = Vector(self.evaluate_input('Alignment Vector'))
- # why do I have to construct a vector here?
- # why is the socket returning a bpy_prop_array ?
- if align_axis.length_squared==0:
- raise RuntimeError(f"WARN: cannot align matrix in {self}"
- " because the alignment vector is zero.")
- input=self.evaluate_input('Matrix').copy()
- y_axis= input.to_3x3().transposed()[1]
- from .utilities import project_point_to_plane
- projected=project_point_to_plane(
- align_axis.normalized(), Vector((0,0,0)), y_axis).normalized()
- # now that we have the projected vector, transform the points from
- # the plane of the y_axis to flat space and get the signed angle
- from math import atan2
- try:
- flattened = (input.to_3x3().inverted() @ projected)
- except ValueError:
- raise ValueError(f"Cannot align the matrix in {self} because it is degenerate.")
- rotation = Matrix.Rotation(atan2(flattened.x, flattened.z), 4, y_axis)
- matrix = rotation @ input.copy()
- matrix.translation=input.translation
- matrix[3][3] = input[3][3]
- self.parameters['Matrix'] = matrix
- self.prepared = True; self.executed = True
- # NOTE: I tried other ways of setting the matrix, including composing
- # it directly from the Y axis, the normalized projection of the align
- # axis, and their cross-product. That only nearly worked.
- # this calculation should not work better, but it does. Why?
-
- class UtilityTransformationMatrix(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Operation" ,
- "Vector" ,
- "W" ,
- ]
- outputs = [
- "Matrix" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Matrix, Vector
- if (operation := self.evaluate_input("Operation")) == 'ROTATE_AXIS_ANGLE':
- # this can, will, and should fail if the axis is 0,0,0
- self.parameters["Matrix"] = rotMat = Matrix.Rotation(self.evaluate_input("W"), 4, Vector(self.evaluate_input("Vector")).normalized())
- elif (operation := self.evaluate_input("Operation")) == 'TRANSLATE':
- m = Matrix.Identity(4)
- if axis := self.evaluate_input("Vector"):
- m[0][3]=axis[0];m[1][3]=axis[1];m[2][3]=axis[2]
- self.parameters['Matrix'] = m
- elif (operation := self.evaluate_input("Operation")) == 'SCALE':
- self.parameters["Matrix"] = Matrix.Scale(self.evaluate_input("W"), 4, Vector(self.evaluate_input("Vector")).normalized())
- else:
- raise NotImplementedError(self.evaluate_input("Operation").__repr__()+ " Operation not yet implemented.")
- self.prepared = True; self.executed = True
- class UtilityIntToString(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Number" ,
- "Zero Padding" ,
- ]
- outputs = [
- "String" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- number = self.evaluate_input("Number")
- zeroes = self.evaluate_input("Zero Padding")
- # I'm casting to int because I want to support any number, even though the node asks for int.
- self.parameters["String"] = str(int(number)).zfill(int(zeroes))
- self.prepared = True; self.executed = True
- class UtilityArrayGet(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Index" ,
- "OoB Behaviour" ,
- "Array" ,
- ]
- outputs = [
- "Output" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- self.rerouted=[]
- def bPrepare(self, bContext = None,):
- if len(self.hierarchy_dependencies)==0 and len(self.hierarchy_connections)==0 and \
- len(self.connections)==0 and len(self.dependencies)==0:
- self.prepared, self.executed = True, True
- return #Either it is already done or it doesn't matter.
- elif self.prepared == False:
- # sort the array entries
- for inp in self.inputs.values():
- inp.links.sort(key=lambda a : -a.multi_input_sort_id)
- oob = self.evaluate_input("OoB Behaviour")
- index = self.evaluate_input("Index")
- from .utilities import cap, wrap
- # we must assume that the array has sent the correct number of links
- if oob == 'WRAP':
- index = index % len(self.inputs['Array'].links)-1
- if oob == 'HOLD':
- index = cap(index, len(self.inputs['Array'].links)-1)
- array_choose_relink(self, [index], "Array", "Output")
- self.prepared, self.executed = True, True
- class UtilityArrayLength(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Array" ,
- ]
- outputs = [
- "Length" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- self.parameters["Length"] = len(self.inputs["Array"].links)
- self.prepared, self.executed = True, True
- class UtilitySetBoneMatrixTail(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = {
- "Matrix" ,
- "Tail Location" ,
- }
- outputs = [
- "Result" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- from mathutils import Matrix
- matrix = self.evaluate_input("Matrix")
- if matrix is None: matrix = Matrix.Identity(4)
- #just do this for now lol
- self.parameters["Result"] = matrix_from_head_tail(matrix.translation, self.evaluate_input("Tail Location"))
- self.prepared = True; self.executed = True
- class UtilityPrint(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Input" ,
- ]
- self.inputs.init_sockets(inputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- if my_input := self.evaluate_input("Input"):
- print("Preparation phase: ", wrapWhite(self), wrapGreen(my_input))
- self.prepared = True
- def bExecute(self, bContext = None,):
- if my_input := self.evaluate_input("Input"):
- print("Execution phase: ", wrapWhite(self), wrapGreen(my_input))
- self.executed = True
- class UtilityCompare(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree, CompareSockets)
- self.init_parameters()
- self.node_type = "UTILITY"
- def bPrepare(self, bContext = None,):
- operation=self.evaluate_input("Comparison")
- a = self.evaluate_input("A")
- b = self.evaluate_input("B")
- if a is None:
- raise GraphError(f"Invalid first input for {self}")
- if b is None:
- raise GraphError(f"Invalid second input for {self}")
- if isinstance(a, str) and isinstance(b, str) and \
- operation not in ['EQUAL', 'NOT_EQUAL']:
- raise GraphError("Strings do not have numerical value to"
- " compute greater than or less than.")
- match operation:
- case "EQUAL":
- self.parameters["Result"] = a == b
- case "NOT_EQUAL":
- self.parameters["Result"] = a != b
- case "GREATER_THAN":
- self.parameters["Result"] = a > b
- case "GREATER_THAN_EQUAL":
- self.parameters["Result"] = a >= b
- case "LESS_THAN":
- self.parameters["Result"] = a < b
- case "LESS_THAN_EQUAL":
- self.parameters["Result"] = a <= b
- self.prepared = True; self.executed = True
- class UtilityChoose(MantisNode):
- def __init__(self, signature, base_tree):
- super().__init__(signature, base_tree)
- inputs = [
- "Condition" ,
- "A" ,
- "B" ,
- ]
- outputs = [
- "Result" ,
- ]
- self.inputs.init_sockets(inputs)
- self.outputs.init_sockets(outputs)
- self.init_parameters()
- self.node_type = "UTILITY"
- def reset_execution(self):
- prepared=self.prepared
- super().reset_execution()
- # prevent this node from attempting to prepare again.
- self.prepared, self.executed = prepared, prepared
- def bPrepare(self, bContext = None,):
- if self.outputs['Result'].links: # otherwise this doesn't matter as it is not connected.
- prGreen(f"Executing Choose Node {self}")
- condition = self.evaluate_input("Condition")
- if self.evaluate_input('A') is not None and self.evaluate_input('B') is not None:
- self.parameters['Result'] = self.evaluate_input('B') if condition else self.evaluate_input('A')
- elif self.evaluate_input('A') is None and self.evaluate_input('B') is None:
- if condition: link = self.inputs['B'].links[0]
- else: link = self.inputs['A'].links[0]
- from_node = link.from_node; from_socket = link.from_socket
- for link in self.outputs['Result'].links:
- from_node.outputs[from_socket].connect(link.to_node, link.to_socket)
- link.die()
- self.flush_links()
- # attempting to init the connections seems more error prone than leaving them be.
- else:
- raise GraphError(f"Choose Node {self} has incorrect types.")
- self.prepared = True; self.executed = True
|