math_containers.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. from .node_container_common import *
  2. def TellClasses():
  3. return [
  4. MathStaticInt,
  5. MathStaticFloat,
  6. MathStaticVector,
  7. ]
  8. #*#-------------------------------#++#-------------------------------#*#
  9. # M A T H N O D E S
  10. #*#-------------------------------#++#-------------------------------#*#
  11. class MathStaticInt:
  12. '''A node representing an armature object'''
  13. def __init__(self, signature, base_tree):
  14. self.base_tree=base_tree
  15. self.executed = False
  16. self.signature = signature
  17. self.inputs = {
  18. "Operation" : NodeSocket(is_input = True, name = "Operation", node = self),
  19. "Int A" : NodeSocket(is_input = True, name = "Int A", node = self),
  20. "Int B" : NodeSocket(is_input = True, name = "Int B", node = self),
  21. }
  22. self.outputs = {
  23. "Result Int" : NodeSocket(name = "Result Int", node=self),
  24. }
  25. self.parameters = {
  26. "Operation":None,
  27. "Int A":None,
  28. "Int B":None,
  29. "Result Int":None,
  30. }
  31. self.node_type = "UTILITY"
  32. self.hierarchy_connections = []
  33. self.connections = []
  34. self.hierarchy_dependencies = []
  35. self.dependencies = []
  36. self.prepared = False
  37. self.executed = False
  38. def bPrepare(self, bContext = None,):
  39. a = self.evaluate_input("Int A"); b = self.evaluate_input("Int B")
  40. result = float("NaN")
  41. if self.evaluate_input("Operation") == "ADD":
  42. result = int(a+b)
  43. if self.evaluate_input("Operation") == "SUBTRACT":
  44. result = int(a-b)
  45. if self.evaluate_input("Operation") == "MULTIPLY":
  46. result = int(a*b)
  47. if self.evaluate_input("Operation") == "FLOOR_DIVIDE":
  48. result = a//b
  49. if self.evaluate_input("Operation") == "MODULUS":
  50. result = int(a%b)
  51. if self.evaluate_input("Operation") == "POWER":
  52. result = int(a**b)
  53. if self.evaluate_input("Operation") == "ABSOLUTE":
  54. result = int(abs(a))
  55. if self.evaluate_input("Operation") == "MAXIMUM":
  56. result = int(a if a <= b else b)
  57. if self.evaluate_input("Operation") == "MINIMUM":
  58. result = int(a if a >= b else b)
  59. if self.evaluate_input("Operation") == "GREATER THAN":
  60. result = int(a > b)
  61. if self.evaluate_input("Operation") == "LESS THAN":
  62. result = int(a < b)
  63. self.parameters["Result Int"] = result
  64. self.prepared = True
  65. self.executed = True
  66. class MathStaticFloat:
  67. '''A node representing an armature object'''
  68. def __init__(self, signature, base_tree):
  69. self.base_tree=base_tree
  70. self.executed = False
  71. self.signature = signature
  72. self.inputs = {
  73. "Operation" : NodeSocket(is_input = True, name = "Operation", node = self),
  74. "Float A" : NodeSocket(is_input = True, name = "Float A", node = self),
  75. "Float B" : NodeSocket(is_input = True, name = "Float B", node = self),
  76. }
  77. self.outputs = {
  78. "Result Float" : NodeSocket(name = "Result Float", node=self),
  79. }
  80. self.parameters = {
  81. "Operation":None,
  82. "Float A":None,
  83. "Float B":None,
  84. "Result Float":None,
  85. }
  86. self.node_type = "UTILITY"
  87. self.hierarchy_connections = []
  88. self.connections = []
  89. self.hierarchy_dependencies = []
  90. self.dependencies = []
  91. self.prepared = False
  92. self.executed = False
  93. def bPrepare(self, bContext = None,):
  94. a = self.evaluate_input("Float A"); b = self.evaluate_input("Float B")
  95. result = float("NaN")
  96. if self.evaluate_input("Operation") == "ADD":
  97. result = a+b
  98. if self.evaluate_input("Operation") == "SUBTRACT":
  99. result = a-b
  100. if self.evaluate_input("Operation") == "MULTIPLY":
  101. result = a*b
  102. if self.evaluate_input("Operation") == "DIVIDE":
  103. result = a/b
  104. if self.evaluate_input("Operation") == "FLOOR_DIVIDE":
  105. result = a//b
  106. if self.evaluate_input("Operation") == "MODULUS":
  107. result = a%b
  108. if self.evaluate_input("Operation") == "POWER":
  109. result = a**b
  110. if self.evaluate_input("Operation") == "ABSOLUTE":
  111. result = abs(a)
  112. if self.evaluate_input("Operation") == "MAXIMUM":
  113. result = a if a <= b else b
  114. if self.evaluate_input("Operation") == "MINIMUM":
  115. result = a if a >= b else b
  116. if self.evaluate_input("Operation") == "GREATER THAN":
  117. result = float(a > b)
  118. if self.evaluate_input("Operation") == "LESS THAN":
  119. result = float(a < b)
  120. self.parameters["Result Float"] = result
  121. self.prepared = True
  122. self.executed = True
  123. class MathStaticVector:
  124. '''A node representing an armature object'''
  125. def __init__(self, signature, base_tree):
  126. self.base_tree=base_tree
  127. self.executed = False
  128. self.signature = signature
  129. self.inputs = {
  130. "Operation" : NodeSocket(is_input = True, name = "Operation", node = self),
  131. "Vector A" : NodeSocket(is_input = True, name = "Vector A", node = self),
  132. "Vector B" : NodeSocket(is_input = True, name = "Vector B", node = self),
  133. "Scalar A" : NodeSocket(is_input = True, name = "Scalar A", node = self),
  134. }
  135. self.outputs = {
  136. "Result Vector" : NodeSocket(name = "Result Vector", node=self),
  137. "Result Float" : NodeSocket(name = "Result Float", node=self),
  138. }
  139. self.parameters = {
  140. "Operation":None,
  141. "Vector A":None,
  142. "Vector B":None,
  143. "Scalar A":None,
  144. "Result Vector":None,
  145. "Result Float":None,
  146. }
  147. self.node_type = "UTILITY"
  148. self.hierarchy_connections = []
  149. self.connections = []
  150. self.hierarchy_dependencies = []
  151. self.dependencies = []
  152. self.prepared = False
  153. self.executed = False
  154. def bPrepare(self, bContext = None,):
  155. from mathutils import Vector
  156. a = Vector(self.evaluate_input("Vector A")).copy()
  157. b = Vector(self.evaluate_input("Vector B")).copy()
  158. s = self.evaluate_input("Scalar A")
  159. if hasattr(s, '__iter__'):
  160. average = lambda iterable : sum(iterable)/len(iterable)
  161. s = average(s)
  162. f_result = float("NaN")
  163. v_result = None
  164. if self.evaluate_input("Operation") == "ADD":
  165. v_result = a+b
  166. if self.evaluate_input("Operation") == "SUBTRACT":
  167. v_result = a-b
  168. if self.evaluate_input("Operation") == "MULTIPLY":
  169. v_result = a*b
  170. if self.evaluate_input("Operation") == "DIVIDE":
  171. v_result = a/b
  172. if self.evaluate_input("Operation") == "POWER":
  173. v_result = a**b
  174. # since these are unary, we need to make a copy lest we create spooky effects elsewhere.
  175. a = a.copy()
  176. if self.evaluate_input("Operation") == "SCALE":
  177. v_result = a.normalized() * s
  178. if self.evaluate_input("Operation") == "LENGTH":
  179. f_result = a.magnitude
  180. if self.evaluate_input("Operation") == "CROSS":
  181. v_result = a.cross(b)
  182. if self.evaluate_input("Operation") == "DOT":
  183. f_result = a.dot(b)
  184. if self.evaluate_input("Operation") == "NORMALIZE":
  185. v_result = a.normalized()
  186. if self.evaluate_input("Operation") == "LINEAR_INTERP":
  187. v_result = a.lerp(b, s).copy()
  188. self.parameters["Result Float"] = f_result
  189. # if v_result:
  190. self.parameters["Result Vector"] = v_result
  191. self.prepared = True
  192. self.executed = True
  193. for c in TellClasses():
  194. setup_container(c)