| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987 | 
							- from bpy.types import Operator
 
- import bpy
 
- from .utilities import (prRed, prGreen, prPurple, prWhite,
 
-                               prOrange,
 
-                               wrapRed, wrapGreen, wrapPurple, wrapWhite,
 
-                               wrapOrange,)
 
- def mantis_poll_op(context):
 
-     space = context.space_data
 
-     if hasattr(space, "node_tree"):
 
-         if (space.node_tree):
 
-             return (space.tree_type == "MantisTree")
 
-     return False
 
- def create_inheritance_node(pb, parent_name, bone_inherit_node, node_tree):
 
-     parent_node = node_tree.nodes.new("linkInherit")
 
-     parent_bone_node = node_tree.nodes.get(parent_name)
 
-     if not parent_bone_node:
 
-         raise RuntimeError("Can't Find parent node!!")
 
-     parent_node.location = parent_bone_node.location; parent_node.location.x+=200
 
-     node_tree.links.new(parent_bone_node.outputs["xForm Out"], parent_node.inputs['Parent'])
 
-     parent_node.inputs["Connected"].default_value        = pb.bone.use_connect
 
-     parent_node.inputs["Inherit Scale"].default_value    = pb.bone.inherit_scale
 
-     parent_node.inputs["Inherit Rotation"].default_value = pb.bone.use_inherit_rotation
 
-     if (bone_inherit_node.get(parent_bone_node.name)):
 
-         bone_inherit_node[parent_bone_node.name].append(parent_node)
 
-     else:
 
-         bone_inherit_node[parent_bone_node.name] = [parent_node]
 
-     return parent_node
 
- def get_pretty_name(name):
 
-     if   name == "bbone_curveinx": return "BBone X Curve-In"
 
-     elif name == "bbone_curveinz": return "BBone Z Curve-In"
 
-     elif name == "bbone_curveoutx": return "BBone X Curve-Out"
 
-     elif name == "bbone_curveoutz": return "BBone Z Curve-Out"
 
-     elif name == "BBone HQ Deformation":
 
-         raise NotImplementedError(wrapRed("I wasn't expecting this property to be driven lol why would you even want to do that"))
 
-     
 
-     elif name == "bbone_handle_type_start": return "BBone Start Handle Type"
 
-     elif name == "bbone_handle_type_end": return "BBone End Handle Type"
 
-     elif name == "bbone_x": return "BBone X Size"
 
-     elif name == "bbone_z": return "BBone Z Size"
 
-     elif name == "bbone_rollin": return "BBone Roll-In"
 
-     elif name == "bbone_rollout": return "BBone Roll-Out"
 
-     elif name == "bbone_scalein": return "BBone Scale-In"
 
-     elif name == "bbone_scaleout": return "BBone Scale-Out"
 
-     pretty = name.replace("_", " ")
 
-     words = pretty.split(" "); pretty = ''
 
-     for word in words:
 
-         pretty+=(word.capitalize()); pretty+=' '
 
-     return pretty [:-1] #omit the last trailing space
 
- constraint_link_map={
 
-     'COPY_LOCATION'   : "LinkCopyLocation",
 
-     'COPY_ROTATION'   : "LinkCopyRotation",
 
-     'COPY_SCALE'      : "LinkCopyScale",
 
-     'COPY_TRANSFORMS' : "LinkCopyTransforms",
 
-     'LIMIT_DISTANCE'  : "LinkLimitDistance",
 
-     'LIMIT_LOCATION'  : "LinkLimitLocation",
 
-     'LIMIT_ROTATION'  : "LinkLimitRotation",
 
-     'LIMIT_SCALE'     : "LinkLimitScale",
 
-     'DAMPED_TRACK'    : "LinkDampedTrack",
 
-     'LOCKED_TRACK'    : "LinkLockedTrack",
 
-     'STRETCH_TO'      : "LinkStretchTo",
 
-     'TRACK_TO'        : "LinkTrackTo",
 
-     'CHILD_OF'        : "LinkInheritConstraint",
 
-     'IK'              : "LinkInverseKinematics",
 
-     'ARMATURE'        : "LinkArmature",
 
-     'SPLINE_IK'       : "LinkSplineIK",
 
-     'TRANSFORM'       : "LinkTransformation",
 
-     }
 
- def create_relationship_node_for_constraint(node_tree, c):
 
-     if cls_name := constraint_link_map.get(c.type):
 
-         return node_tree.nodes.new(cls_name)
 
-     else:
 
-         prRed ("Not yet implemented: %s" % c.type)
 
-         return None
 
-     
 
-     
 
- def fill_parameters(node, c, context):
 
-     # just try the basic parameters...
 
-     
 
-     node.mute = not c.enabled
 
-     if c.mute == True and c.enabled == True:
 
-         node.mute = c.mute
 
-         # this is obviously stupid, but it's the new API as of, IIRC, 2.80 
 
-     
 
-     try:
 
-         owner_space = c.owner_space
 
-         if c.owner_space == 'CUSTOM':
 
-             pass
 
-             #raise NotImplementedError("Custom Space is a TODO")
 
-         if ( input := node.inputs.get("Owner Space") ):
 
-             input.default_value = owner_space
 
-     except AttributeError:
 
-         pass
 
-     
 
-     try:
 
-         target_space = c.target_space
 
-         if c.target_space == 'CUSTOM':
 
-             pass
 
-             #raise NotImplementedError("Custom Space is a TODO")
 
-         if ( input := node.inputs.get("Target Space") ):
 
-             input.default_value = target_space
 
-     except AttributeError:
 
-         pass
 
-     
 
-     try:
 
-         use_x, use_y, use_z = c.use_x, c.use_y, c.use_z
 
-         if ( input := node.inputs.get("Axes") ):
 
-             input.default_value[0] = use_x
 
-             input.default_value[1] = use_y
 
-             input.default_value[2] = use_z
 
-     except AttributeError:
 
-         pass
 
-     try:
 
-         invert_x, invert_y, invert_z = c.invert_x, c.invert_y, c.invert_z
 
-         if ( input := node.inputs.get("Invert") ):
 
-             input.default_value[0] = invert_x
 
-             input.default_value[1] = invert_y
 
-             input.default_value[2] = invert_z
 
-     except AttributeError:
 
-         pass
 
-     
 
-     try:
 
-         influence = c.influence
 
-         if ( input := node.inputs.get("Influence") ):
 
-             input.default_value = influence
 
-     except AttributeError:
 
-         pass
 
-     
 
-     # gonna dispense with the try/except from here on
 
-     if   (c.type == 'COPY_LOCATION'):
 
-         node.inputs["Head/Tail"].default_value = c.head_tail
 
-         node.inputs["UseBBone"].default_value  = c.use_bbone_shape
 
-     elif (c.type == 'COPY_ROTATION'):
 
-         node.inputs["RotationOrder"].default_value = c.euler_order
 
-         # ofset (legacy) is not supported TODO BUG
 
-         if (mix_mode := c.mix_mode) == 'OFFSET':
 
-             mix_mode = 'AFTER'
 
-         node.inputs["Rotation Mix"].default_value  = mix_mode
 
-     elif (c.type == 'COPY_SCALE'):
 
-         #node.inputs["Additive"].default_value = c.use_make_uniform # not yet implemented
 
-         #node.inputs["Power"].default_value = c.head_tail
 
-         node.inputs["Average"].default_value  = c.use_make_uniform
 
-         node.inputs["Offset"].default_value  = c.use_offset
 
-     elif (c.type == 'COPY_TRANSFORMS'):
 
-         node.inputs["Head/Tail"].default_value = c.head_tail
 
-         node.inputs["UseBBone"].default_value  = c.use_bbone_shape
 
-         node.inputs["Mix"].default_value  = c.mix_mode
 
-     elif (c.type == 'LIMIT_DISTANCE'):
 
-         print ("Not yet handled: ", c.type)
 
-     elif (c.type in ['LIMIT_LOCATION', 'LIMIT_ROTATION', 'LIMIT_SCALE']):
 
-         # print (c.type)
 
-         try:
 
-             node.inputs["Use Max X"].default_value = c.use_max_x
 
-             node.inputs["Use Max Y"].default_value = c.use_max_y
 
-             node.inputs["Use Max Z"].default_value = c.use_max_z
 
-             #
 
-             node.inputs["Use Min X"].default_value = c.use_min_x
 
-             node.inputs["Use Min Y"].default_value = c.use_min_y
 
-             node.inputs["Use Min Z"].default_value = c.use_min_z
 
-         except AttributeError: # rotation
 
-             node.inputs["Use X"].default_value = c.use_limit_x
 
-             node.inputs["Use Y"].default_value = c.use_limit_y
 
-             node.inputs["Use Z"].default_value = c.use_limit_z
 
-         node.inputs["Max X"].default_value = c.max_x
 
-         node.inputs["Max Y"].default_value = c.max_y
 
-         node.inputs["Max Z"].default_value = c.max_z
 
-         #
 
-         node.inputs["Min X"].default_value = c.min_x
 
-         node.inputs["Min Y"].default_value = c.min_y
 
-         node.inputs["Min Z"].default_value = c.min_z
 
-     elif (c.type == 'DAMPED_TRACK'):
 
-         node.inputs["Head/Tail"].default_value   = c.head_tail
 
-         node.inputs["UseBBone"].default_value    = c.use_bbone_shape
 
-         node.inputs["Track Axis"].default_value  = c.track_axis
 
-     elif (c.type == 'LOCKED_TRACK'):
 
-         node.inputs["Head/Tail"].default_value   = c.head_tail
 
-         node.inputs["UseBBone"].default_value    = c.use_bbone_shape
 
-         node.inputs["Track Axis"].default_value  = c.track_axis
 
-         node.inputs["Lock Axis"].default_value   = c.lock_axis
 
-     elif (c.type == 'STRETCH_TO'):
 
-         node.inputs["Head/Tail"].default_value = c.head_tail
 
-         node.inputs["UseBBone"].default_value  = c.use_bbone_shape
 
-         node.inputs["Volume Variation"].default_value = c.bulge
 
-         node.inputs["Use Volume Min"].default_value = c.use_bulge_min
 
-         node.inputs["Volume Min"].default_value = c.bulge_min
 
-         node.inputs["Use Volume Max"].default_value = c.use_bulge_max
 
-         node.inputs["Volume Max"].default_value = c.bulge_max
 
-         node.inputs["Smooth"].default_value = c.bulge_smooth
 
-         node.inputs["Maintain Volume"].default_value = c.volume
 
-         node.inputs["Rotation"].default_value        = c.keep_axis
 
-     elif (c.type == 'TRACK_TO'):
 
-         print ("Not yet handled: ", c.type)
 
-     elif (c.type == 'CHILD_OF'):
 
-         print ("Not yet handled: ", c.type)
 
-     elif (c.type == 'IK'):
 
-         node.inputs["Chain Length"].default_value = c.chain_count
 
-         node.inputs["Use Tail"].default_value = c.use_tail
 
-         node.inputs["Stretch"].default_value = c.use_stretch
 
-         # this isn't quite right lol
 
-         node.inputs["Position"].default_value = c.weight
 
-         node.inputs["Rotation"].default_value = c.orient_weight
 
-         if not (c.use_location):
 
-             node.inputs["Position"].default_value = 0
 
-         if not (c.use_rotation):
 
-             node.inputs["Rotation"].default_value = 0
 
-     elif (c.type == 'ARMATURE'):
 
-         node.inputs["Preserve Volume"].default_value = c.use_deform_preserve_volume
 
-         node.inputs["Use Envelopes"].default_value = c.use_bone_envelopes
 
-         node.inputs["Use Current Location"].default_value = c.use_current_location
 
-         for i in range(len(c.targets)):
 
-             with context.temp_override(node=node):
 
-                 bpy.ops.mantis.link_armature_node_add_target()
 
-     elif (c.type == 'SPLINE_IK'):
 
-         node.inputs["Chain Length"].default_value = c.chain_count
 
-         node.inputs["Even Divisions"].default_value = c.use_even_divisions
 
-         node.inputs["Chain Offset"].default_value = c.use_chain_offset
 
-         node.inputs["Use Curve Radius"].default_value = c.use_curve_radius
 
-         node.inputs["Y Scale Mode"].default_value = c.y_scale_mode
 
-         node.inputs["XZ Scale Mode"].default_value = c.xz_scale_mode
 
-     elif (c.type == 'TRANSFORM'):
 
-         # I can't be arsed to do all this work..
 
-         from .link_containers import transformation_props_sockets as props
 
-         for prop, (sock_name, _unused) in props.items():
 
-             if "from" in prop:
 
-                 if prop in ["map_from"] or "to" in prop:
 
-                    pass 
 
-                 elif c.map_from == 'LOCATION':
 
-                     if "scale" in prop:
 
-                         continue
 
-                     if "rot" in prop:
 
-                         continue
 
-                 elif c.map_from == 'ROTATION':
 
-                     if "rot" not in prop:
 
-                         continue
 
-                 elif c.map_from == 'SCALE':
 
-                     if "scale" not in prop:
 
-                         continue
 
-             if "to" in prop:
 
-                 if prop in ["map_to"] or "from" in prop:
 
-                    pass 
 
-                 elif c.map_from == 'LOCATION':
 
-                     if "scale" in prop:
 
-                         continue
 
-                     if "rot" in prop:
 
-                         continue
 
-                 elif c.map_from == 'ROTATION':
 
-                     if "rot" not in prop:
 
-                         continue
 
-                 elif c.map_from == 'SCALE':
 
-                     if "scale" not in prop:
 
-                         continue
 
-             node.inputs[sock_name].default_value = getattr(c, prop)
 
-             if prop in "mute":
 
-                 node.inputs[sock_name].default_value = not getattr(c, prop)
 
-             
 
-         # should probably do it this way all over actually.
 
-     else:
 
-         raise NotImplementedError("Not handled yet: %s" % c.type)
 
-         return None
 
- def walk_edit_bone(armOb, bone):
 
-     # this is a simplified version of the node-tree walking code
 
-     bonePath, bones, lines, seek = [0,], set(), [], bone
 
-     while (True):
 
-         curheight = len(bonePath)-1; ind = bonePath[-1]
 
-         if (curheight == 0) and (ind > len(bone.children)-1):
 
-             break 
 
-         if (curheight > 0):
 
-             parent = seek.parent
 
-             if (ind > len(seek.children)-1 ):
 
-                 bonePath[curheight-1]+=1
 
-                 del bonePath[curheight]
 
-                 seek = parent
 
-                 continue
 
-                 # should work...
 
-         seek = get_bone_from_path(bone, bonePath)
 
-         if (seek.name not in bones):
 
-             lines.append(bonePath.copy())
 
-         bones.add(seek.name)
 
-         
 
-         if (seek.children):
 
-             bonePath.append(0)
 
-         else:
 
-             bonePath[curheight] = bonePath[curheight] + 1
 
-             seek = seek.parent
 
-     return lines
 
- def get_bone_from_path(root_bone, path):
 
-     # this function assumes the path is valid
 
-     path = path.copy(); bone = root_bone
 
-     while(path):
 
-         bone = bone.children[path.pop(0)]
 
-     return bone
 
- def setup_custom_properties(bone_node, pb):
 
-     for k, v in pb.items(): # Custom Properties
 
-         socktype, prop_type = '', type(v)
 
-         # print (prop_type)
 
-         if   prop_type == bool:
 
-             socktype = 'ParameterBoolSocket'
 
-         elif prop_type == int:
 
-             socktype = 'ParameterIntSocket'
 
-         elif prop_type == float:
 
-             socktype = 'ParameterFloatSocket'
 
-         elif prop_type == bpy.props.FloatVectorProperty:
 
-             socktype = 'ParameterVectorSocket'
 
-         elif prop_type == str:
 
-             socktype = 'ParameterStringSocket'
 
-         else:
 
-             continue # it's a PointerProp or something
 
-         #if self.prop_type == 'ENUM':
 
-         #    sock_type = 'ParameterStringSocket'
 
-         new_prop = bone_node.inputs.new( socktype, k)
 
-         bone_node.outputs.new( socktype, k)
 
-         # set its value and limits and such
 
-         # from rna_prop_ui import rna_idprop_ui_create
 
-         # I have no idea how to get the data in a sane way, I guess I will use this...
 
-         ui_data = pb.id_properties_ui(k).as_dict()
 
-         
 
-         new_prop.default_value = ui_data['default']
 
-         try:
 
-             new_prop.min      = ui_data['min']
 
-             new_prop.max      = ui_data['max']
 
-             new_prop.soft_min = ui_data['soft_min']
 
-             new_prop.soft_max = ui_data['soft_max']
 
-         except AttributeError:
 
-             pass # it's not a number
 
-         except KeyError:
 
-             pass # same, or not defined maybe
 
-         try:
 
-             new_prop.description = ui_data['description']
 
-         except KeyError:
 
-             prOrange("Figure out why this happens?")
 
- def setup_ik_settings(bone_node, pb):
 
-     # Set Up IK settings:
 
-     stiffness = [pb.ik_stiffness_x, pb.ik_stiffness_y, pb.ik_stiffness_z]
 
-     lock = [pb.lock_ik_x, pb.lock_ik_y, pb.lock_ik_z]
 
-     limit = [pb.use_ik_limit_x, pb.use_ik_limit_y, pb.use_ik_limit_z]
 
-     bone_node.inputs["IK Stretch"].default_value = pb.ik_stretch
 
-     bone_node.inputs["Lock IK"].default_value = lock
 
-     bone_node.inputs["IK Stiffness"].default_value = stiffness
 
-     bone_node.inputs["Limit IK"].default_value = limit
 
-     bone_node.inputs["X Min"].default_value = pb.ik_min_x
 
-     bone_node.inputs["X Max"].default_value = pb.ik_max_x
 
-     bone_node.inputs["Y Min"].default_value = pb.ik_min_y
 
-     bone_node.inputs["Y Max"].default_value = pb.ik_max_y
 
-     bone_node.inputs["Z Min"].default_value = pb.ik_min_z
 
-     bone_node.inputs["Z Max"].default_value = pb.ik_max_z
 
- def setup_vp_settings(bone_node, pb, do_after, node_tree):
 
-     # bone_node.inputs["Hide"].default_value = pb.bone.hide
 
-     bone_node.inputs["Custom Object Scale"].default_value = pb.custom_shape_scale_xyz
 
-     bone_node.inputs["Custom Object Translation"].default_value = pb.custom_shape_translation
 
-     bone_node.inputs["Custom Object Rotation"].default_value = pb.custom_shape_rotation_euler
 
-     bone_node.inputs["Custom Object Scale to Bone Length"].default_value = pb.use_custom_shape_bone_size
 
-     bone_node.inputs["Custom Object Wireframe"].default_value = pb.bone.show_wire
 
-     # bone_node.inputs["Layer Mask"].default_value = pb.bone.layers
 
-     collection_membership = ''
 
-     for col in pb.bone.collections:
 
-         # TODO: implement this!
 
-         pass
 
-     bone_node.inputs["Bone Collection"].default_value = collection_membership
 
-     
 
-     if (shape_ob := pb.custom_shape):
 
-         shape_n = None
 
-         for n in node_tree.nodes:
 
-             if n.name == shape_ob.name:
 
-                 shape_n = n
 
-                 break
 
-         else: # we make it now
 
-             shape_n = node_tree.nodes.new("InputExistingGeometryObject")
 
-             shape_n.name = shape_ob.name
 
-             shape_n.label = shape_ob.name
 
-             shape_n.inputs["Name"].default_value = shape_ob.name
 
-         node_tree.links.new(shape_n.outputs["Object"], bone_node.inputs['Custom Object'])
 
-     
 
-     if (shape_xform_ob := pb.custom_shape_transform): # not implemented just yet
 
-         shape_xform_n = None
 
-         for n in node_tree.nodes:
 
-             if n.name == shape_xform_ob.name:
 
-                 shape_xform_n = n
 
-                 node_tree.links.new(shape_xform_n.outputs["xForm"], bone_node.inputs['Custom Object xForm Override'])
 
-                 break
 
-         else: # make it a task
 
-             do_after.append( ("Custom Object xForm Override", bone_node.name , shape_xform_ob.name ) )
 
-     # all the above should be in a function.
 
- def setup_df_settings(bone_node, pb):
 
-         bone_node.inputs["Deform"].default_value = pb.bone.use_deform
 
-         # TODO: get the rest of these working
 
-         # eb.envelope_distance     = self.evaluate_input("Envelope Distance")
 
-         # eb.envelope_weight       = self.evaluate_input("Envelope Weight")
 
-         # eb.use_envelope_multiply = self.evaluate_input("Envelope Multiply")
 
-         # eb.head_radius           = self.evaluate_input("Envelope Head Radius")
 
-         # eb.tail_radius           = self.evaluate_input("Envelope Tail Radius")
 
- def create_driver(in_node_name, out_node_name, armOb, finished_drivers, switches, driver_vars, fcurves, drivers, node_tree, context):
 
-     # TODO: CLEAN this ABOMINATION
 
-     print ("DRIVER: ", in_node_name, out_node_name)
 
-     in_node  = node_tree.nodes[ in_node_name]
 
-     out_node = node_tree.nodes[out_node_name]
 
-     for fc in armOb.animation_data.drivers:
 
-         if (in_node.label not in fc.data_path) or ( "[\""+out_node.label+"\"]" not in fc.data_path):
 
- #                        print ("node not in name?: %s" % fc.data_path)
 
-             continue
 
-         if fc.data_path in finished_drivers:
 
-             continue
 
-         finished_drivers.add(fc.data_path)
 
-         print ("Creating driver.... %s" % fc.data_path)
 
-         keys = []
 
-         for k in fc.keyframe_points:
 
-             key = {}
 
-             for prop in dir(k):
 
-                 if ("__" in prop) or ("bl_" in prop): continue
 
-                 #it's __name__ or bl_rna or something
 
-                 key[prop] = getattr(k, prop)
 
-             keys.append(key)
 
-         switch, inverted = False, False
 
-         if (fc.evaluate(0) == 0) and (fc.evaluate(1) == 1):
 
-             switch = True
 
-         elif (fc.evaluate(0) == 1) and (fc.evaluate(1) == 0):
 
-             switch = True; inverted = True
 
-         if (fc.driver.type == 'SCRIPTED'):
 
-             #print (fc.driver.expression)
 
-             if not (len(fc.driver.variables) == 1 and fc.driver.expression == fc.driver.variables[0].name):
 
-                 switch = False
 
-         if (switch):
 
-             # OK, let's prepare before making the node
 
-             #  we want to reuse existing nodes if possible.
 
-             target_string = fc.driver.variables[0].targets[0].data_path
 
-             if target_string == "":
 
-                 for var in fc.driver.variables:
 
-                     print (var)
 
-                     print (var.name)
 
-                     print (var.targets)
 
-             bone = target_string.split("pose.bones[\"")[1]
 
-             bone = bone.split("\"]")[0]
 
-             bone_node = node_tree.nodes.get(bone)
 
-             if not (bone_node):
 
-                 raise RuntimeError("excpected to find....", bone)
 
-             
 
-             
 
-             p_string = fc.driver.variables[0].targets[0].data_path
 
-             p_string = p_string.split("[\"")[-1]; p_string = p_string.split("\"]")[0]
 
-             #switch_node.inputs["Parameter"].default_value = p_string
 
-             #switch_node.inputs["Parameter Index"].default_value = fc.array_index
 
-             #switch_node.inputs["Invert Switch"].default_value = inverted
 
-             parameter = fc.data_path
 
-             
 
-             # Try to find an existing node.
 
-             fail = False
 
-             switch_node = None
 
-             for n in switches:
 
-                 # if n.inputs[0].is_linked:
 
-                 #     if n.inputs[0].links[0].from_node != bone_node:
 
-                 #         fail = True
 
-                 if n.inputs[0].is_linked:
 
-                     if n.inputs[0].links[0].from_node != bone_node:
 
-                         fail = True
 
-                     if n.inputs[0].links[0].from_socket != bone_node.outputs.get(p_string):
 
-                         fail = True
 
-                 else:
 
-                     if n.inputs[0].default_value != p_string:
 
-                         fail = True
 
-                 if n.inputs[1].default_value != fc.array_index:
 
-                     fail = True
 
-                 if n.inputs[2].default_value != inverted:
 
-                     fail = True
 
-                 if not fail:
 
-                     switch_node = n
 
-                     break # found it!
 
-             else:
 
-                 # make and connect the switch node
 
-                 switch_node = node_tree.nodes.new("UtilitySwitch"); switches.append(switch_node)
 
-                 # node_tree.links.new(bone_node.outputs["xForm Out"], switch_node.inputs[0])
 
-                 try:
 
-                     node_tree.links.new(bone_node.outputs[p_string], switch_node.inputs[0])
 
-                 except KeyError:
 
-                     prRed("this is such bad code lol fix this", p_string)
 
-                 switch_node.inputs[1].default_value = fc.array_index
 
-                 switch_node.inputs[2].default_value = inverted
 
-                 #print ("   Inverted?  ", inverted, (fc.evaluate(0) == 1) and (fc.evaluate(1) == 0), switch_node.inputs[3].default_value)
 
-                 if not inverted:
 
-                     print ("    --> Check this node: %s" % switch_node.name)
 
-             # this may be a custom property or a normal property...
 
-             # this should lead to a constraint
 
-             if len(parameter.split("[\"") ) == 3:
 
-                 property = parameter.split(".")[-1]
 
-                 if (property == 'mute'): # this is mapped to the 'Enable' socket...
 
-                     prop_in = out_node.inputs.get('Enable')
 
-                 else:
 
-                     prop_in = out_node.inputs.get(get_pretty_name(property))
 
-                 if prop_in:
 
-                     node_tree.links.new(switch_node.outputs["Driver"], prop_in)
 
-                 else:
 
-                     print ("   couldn't find: ", property, out_node.label, out_node.name)
 
-                 # this won't always work tho
 
-             #Finally, it should be noted that we are assuming it uses the same object ...
 
-             #  drivers from Rigify always should use the same object, but I want to support
 
-             #  detecting drivers across objects.
 
-         else: # we'll have to set this one up manually
 
-             # Let's make the variable nodes, the Driver node, and the fCurve node.
 
-             # Get the variable information
 
-             if (True):
 
-                 var_nodes = []; num_vars = 0
 
-                 for num_vars, var in enumerate(fc.driver.variables):
 
-                     target1, target2, bone_target, bone_target2 = [None]*4
 
-                     var_data = {}
 
-                     var_data["Variable Type"] = var.type
 
-                     var_data["Property"] = ""
 
-                     if len(var.targets) >= 1:
 
-                         target1 = var.targets[0]
 
-                         if (var_data["Variable Type"] != 'SINGLE_PROP'):
 
-                             bone_target = var.targets[0].bone_target
 
-                         else: # figure it out by the data path string.
 
-                             target_string = var.targets[0].data_path
 
-                             bone_target = target_string.split("pose.bones[\"")[1]; bone_target = bone_target.split("\"]")[0]
 
-                             # we also need to get the property.
 
-                             p_string = fc.driver.variables[0].targets[0].data_path
 
-                             p_string = p_string.split("[\"")[-1]; p_string = p_string.split("\"]")[0]
 
-                             var_data["Property"] = p_string
 
-                         if (var_data["Variable Type"] == 'TRANSFORMS'):
 
-                             transform_channel_map = {
 
-                                 "LOC_X"     : ('location', 0),
 
-                                 "LOC_Y"     : ('location', 1),
 
-                                 "LOC_Z"     : ('location', 2),
 
-                                 "ROT_X"     : ('rotation', 0),
 
-                                 "ROT_Y"     : ('rotation', 1),
 
-                                 "ROT_Z"     : ('rotation', 2),
 
-                                 "ROT_W"     : ('rotation', 3),
 
-                                 "SCALE_X"   : ('scale', 0),
 
-                                 "SCALE_Y"   : ('scale', 1),
 
-                                 "SCALE_Z"   : ('scale', 2),
 
-                                 "SCALE_AVG" : ('scale', 3), }
 
-                             # if (var.transform_type in transform_channel_map.keys()):
 
-                             #     var_data["Property"], var_data["Property Index"] = transform_channel_map[var.transform_type]
 
-                             prRed("I am pretty sure this thing does not friggin work with whatever it is I commented above...")
 
-                             var_data["Evaluation Space"] = var.targets[0].transform_space
 
-                             var_data["Rotation Mode"] = var.targets[0].rotation_mode
 
-                     if len(var.targets) == 2:
 
-                         target2 = var.targets[1]
 
-                         bone_target2 = var.targets[1].bone_target
 
-                     # check if the variable already exists in the tree.
 
-                     target_node1, target_node2 = None, None
 
-                     if (target1 and bone_target):
 
-                         target_node1 = node_tree.nodes[bone_target]
 
-                     elif (target1 and not bone_target):
 
-                         target_node1 = node_tree.nodes[target1]
 
-                     if (target2 and bone_target2):
 
-                         target_node2 = node_tree.nodes[bone_target2]
 
-                     elif (target2 and not bone_target2):
 
-                         target_node2 = node_tree.nodes[target2]
 
-                     
 
-                     
 
-                     var_node = None
 
-                     for n in driver_vars:                            
 
-                         fail = False
 
-                         if (inp := n.inputs['xForm 1']).is_linked:
 
-                             if inp.links[0].from_node != target_node1:
 
-                                 fail = True
 
-                         if (inp := n.inputs['xForm 2']).is_linked:
 
-                             if inp.links[0].from_node != target_node2:
 
-                                 fail = True
 
-                         #
 
-                         if n.inputs[0].default_value != var_data["Variable Type"]:
 
-                             fail = True
 
-                         if n.inputs[1].default_value != var_data["Property"]:
 
-                             fail = True
 
-                         try:
 
-                             if n.inputs[2].default_value != var_data["Property Index"]:
 
-                                 fail = True
 
-                             if n.inputs[3].default_value != var_data["Evaluation Space"]:
 
-                                 fail = True
 
-                             if n.inputs[4].default_value != var_data["Rotation Mode"]:
 
-                                 fail = True
 
-                         except KeyError:
 
-                             pass # this is a SCRIPTED node it seems
 
-                         if not fail:
 
-                             var_node = n
 
-                             prWhite("Variable Node Found %s!" % var_node )
 
-                             break # found it!
 
-                     else:
 
-                         var_node = node_tree.nodes.new("UtilityDriverVariable"); driver_vars.append(var_node)
 
-                         prRed("Creating Node: %s" % var_node.name)
 
-                         for key, value in var_data.items():
 
-                             try:
 
-                                 var_node.inputs[key].default_value = value
 
-                             except TypeError as e: # maybe it is a variable\
 
-                                 if key == "Variable Type":
 
-                                     var_node.inputs[key].default_value = "SINGLE_PROP"
 
-                                 else: raise e
 
-                         if (target1 and bone_target):
 
-                             node_tree.links.new(node_tree.nodes[bone_target].outputs['xForm Out'], var_node.inputs['xForm 1'])
 
-                         elif (target1 and not bone_target):
 
-                             node_tree.links.new(node_tree.nodes[target1].outputs['xForm Out'], var_node.inputs['xForm 1'])
 
-                         if (target2 and bone_target2):
 
-                             node_tree.links.new(node_tree.nodes[bone_target2].outputs['xForm Out'], var_node.inputs['xForm 2'])
 
-                         elif (target2 and not bone_target2):
 
-                             node_tree.links.new(node_tree.nodes[target2].outputs['xForm Out'], var_node.inputs['xForm 2'])
 
-                     var_nodes.append(var_node)
 
-                     num_vars+=1 # so the len(num_vars) will be correct
 
-                 # get the keyframes from the driver fCurve
 
-                 keys = {}
 
-                 from mathutils import Vector
 
-                 if len(fc.keyframe_points) > 0:
 
-                     # TODO: make this do more than co_ui
 
-                     for i, k in enumerate(fc.keyframe_points):
 
-                         keys[i] = {'co_ui':k.co_ui}
 
- #                                print (fc.data_path)
 
- #                                print (len(fc.keyframe_points))
 
- #                                raise NotImplementedError("Not needed for first milestone")
 
-                 else:
 
- #                                fc_ob = fCurve_node.fake_fcurve_ob
 
- #                                node_fc = fc_ob.animation_data.action.fcurves[0]
 
- #                                fc.keyframe_points.add(2)
 
-                     if ((len(fc.modifiers) == 0) or ((fc.evaluate(0) == 0) and (fc.evaluate(1) == 1))):
 
-                         keys[0] = {'co_ui':Vector((0, 0))}
 
-                         keys[1] = {'co_ui':Vector((1, 1))}
 
-                     elif (fc.evaluate(0) == 1) and (fc.evaluate(1) == 0):
 
-                         keys[0] = {'co_ui':Vector((0, 1))}
 
-                         keys[1] = {'co_ui':Vector((1, 0))}
 
-                     else:
 
-                         print ("Could not get keys!")
 
-                         # TODO find out why this happens
 
-                         # I HAVE NO IDEA
 
-                         pass
 
- #                                elif (fc.evaluate(0) == 1) and (fc.evaluate(1) == 0):
 
- #                                    kf0 = fc.keyframe_points[0]; kf0.co_ui = (0, 1)
 
- #                                    kf1 = fc.keyframe_points[1]; kf1.co_ui = (1, 0)
 
-                 # now get the fCurve
 
-                 fCurve_node = None
 
-                 for n in fcurves:
 
-                     fc_ob = n.fake_fcurve_ob; node_fc = fc_ob.animation_data.action.fcurves[0]
 
-                     node_keys = {}
 
-                     for i, k in enumerate(node_fc.keyframe_points):
 
-                         node_keys[i] = {'co_ui':k.co_ui}
 
-                     # now let's see if they are the same:
 
-                     if (keys != node_keys):
 
-                         continue
 
-                     fCurve_node = n
 
-                     break
 
-                 else:
 
-                     fCurve_node = node_tree.nodes.new("UtilityFCurve")
 
-                     # fc_ob = fCurve_node.fake_fcurve_ob
 
-                     # node_fc = fc_ob.animation_data.action.fcurves[0]
 
-                     # fcurves.append(fCurve_node)
 
-                     # while(node_fc.keyframe_points): # clear it, it has a default FC
 
-                     #     node_fc.keyframe_points.remove(node_fc.keyframe_points[0], fast=True)
 
-                     # node_fc.update()
 
-                     # node_fc.keyframe_points.add(len(keys))
 
-                     # for k, v in keys.items():
 
-                     #     node_fc.keyframe_points[k].co_ui = v['co_ui']
 
-                     #     # todo eventually the other dict elements ofc
 
-                     for num_keys, (k, v) in enumerate(keys.items()):
 
-                         fCurve_node.inputs.new("KeyframeSocket", "Keyframe."+str(num_keys).zfill(3))
 
-                         kf_node = node_tree.nodes.new("UtilityKeyframe")
 
-                         kf_node.inputs[0].default_value = v['co_ui'][0]
 
-                         kf_node.inputs[1].default_value = v['co_ui'][1]
 
-                         node_tree.links.new(kf_node.outputs[0], fCurve_node.inputs[num_keys])
 
-                         
 
-                     
 
-                 # NOW the driver itself
 
-                 driver_node = None
 
-                 # checc for it...
 
-                 driver_node = node_tree.nodes.new("UtilityDriver")
 
-                 driver_node.inputs["Driver Type"].default_value = fc.driver.type
 
-                 driver_node.inputs["Expression"].default_value = fc.driver.expression.replace ('var', 'a')
 
-                 # HACK, fix the above with a more robust solution
 
-                 
 
-                 node_tree.links.new(fCurve_node.outputs[0], driver_node.inputs['fCurve'])
 
-                 for i, var_node in zip(range(num_vars), var_nodes):
 
-                     # TODO TODO BUG HACK
 
-                     with context.temp_override(node=driver_node):
 
-                         bpy.ops.mantis.driver_node_add_variable()
 
-                     # This causes an error when you run it from the console! DO NOT leave this
 
-                     node_tree.links.new(var_node.outputs[0], driver_node.inputs[-1])
 
-                 # HACK duplicated code from earlier...
 
-                 parameter = fc.data_path
 
-                 prWhite( "parameter: %s" % parameter)
 
-                 property = ''
 
-                 if len(parameter.split("[\"") ) == 3:
 
-                     property = parameter.split(".")[-1]
 
-                     if (property == 'mute'): # this is mapped to the 'Enable' socket...
 
-                         prop_in = out_node.inputs.get('Enable')
 
-                     else:
 
-                         prop_in = out_node.inputs.get(get_pretty_name(property))
 
-                         if not prop_in: # this is a HACK because my solution is terrible and also bad
 
-                             if property == "head_tail":
 
-                                 prop_in = out_node.inputs.get("Head/Tail")
 
-                                 # the socket should probably know what Blender thing is being mapped to it as a custom prop
 
-                     if not prop_in:
 
-                         # try one last thing:
 
-                         property = parameter.split("targets[")[-1]
 
-                         target_index = int(property[0])
 
-                         property = "targets[" + property # HACK lol
 
-                         # get the property by index...
 
-                         prop_in = out_node.inputs[target_index*2+6+1] # this is the weight, not the target
 
-                     if prop_in:
 
-                         prRed ("   found: %s, %s, %s" % (property, out_node.label, out_node.name))
 
-                         node_tree.links.new(driver_node.outputs["Driver"], prop_in)
 
-                     else:
 
-                         prRed ("   couldn't find: %s, %s, %s" % (property, out_node.label, out_node.name))
 
-                 elif len(parameter.split("[\"") ) == 2:
 
-                     # print (parameter.split("[\"") ); raise NotImplementedError
 
-                     property = parameter.split(".")[-1]
 
-                 else:
 
-                     prWhite( "parameter: %s" % parameter)
 
-                     prRed ("   couldn't find: ", property, out_node.label, out_node.name)
 
- def do_generate_armature(context, node_tree):
 
-     
 
-         from time import time
 
-         start = time()
 
-         node_tree.do_live_update = False
 
-         
 
-         armOb = bpy.context.active_object
 
-         
 
-         #This will generate it in the current node tree and OVERWRITE!
 
-         node_tree.nodes.clear()
 
-         
 
-         world_in = node_tree.nodes.new("xFormRootNode")
 
-         armature = node_tree.nodes.new("xFormArmatureNode")
 
-         world_in.location = (-200, 0)
 
-         armature.location = ( 0, 0)
 
-         
 
-         
 
-         do_after = []
 
-         
 
-         
 
-         for root in armOb.data.bones:
 
-             if root.parent is None:
 
-                 iter_start= time()
 
-                 lines = []
 
-                 lines = walk_edit_bone(armOb, root)
 
-                 lines.append([]) # add the root itself HACK ugly
 
-                 milestone=time()
 
-                 prPurple("got the bone paths", time() - milestone); milestone=time()
 
-                 # create links:
 
-                 node_tree.links.new(world_in.outputs["World Out"], armature.inputs['Relationship'])
 
-                 
 
-                 # set up some properties:
 
-                 armature.inputs["Name"].default_value = armOb.name
 
-                 armature.name = armOb.name; armature.label = armOb.name
 
-                 
 
-                 # for getting parent nodes
 
-                 bone_inherit_node = {}
 
-                 
 
-                 # do short lines first bc longer lines rely on their results
 
-                 sort_by_len = lambda elem : len(elem)
 
-                 lines.sort(key=sort_by_len)
 
-                 
 
-                 for bone_path in lines:
 
-                     prGreen("for bone_path in lines", time() - milestone); milestone=time()
 
-                     # first go through the bone path and find relevant information
 
-                     bone = get_bone_from_path(root, bone_path)
 
-                     bone_node = node_tree.nodes.new("xFormBoneNode")
 
-                     bone_node.inputs["Name"].default_value = bone.name
 
-                     bone_node.name, bone_node.label = bone.name, bone.name
 
-                     matrix = bone.matrix_local.copy()
 
-                     bone_node.inputs["Matrix"].default_value = [
 
-                            matrix[0][0], matrix[0][1], matrix[0][2], matrix[0][3],
 
-                            matrix[1][0], matrix[1][1], matrix[1][2], matrix[1][3],
 
-                            matrix[2][0], matrix[2][1], matrix[2][2], matrix[2][3], # last element is bone length, for mantis
 
-                            matrix[3][0], matrix[3][1], matrix[3][2], bone.length ] #matrix[3][3], ]
 
-                     x_distance, y_distance = 0, 0
 
-                     pb = armOb.pose.bones[bone.name]
 
-                     possible_parent_nodes = []
 
-                     
 
-                     if bone_path: # not a root
 
-                         x_distance, y_distance = len(bone_path), bone_path[-1]
 
-                         possible_parent_nodes = bone_inherit_node.get(bone.parent.name)
 
-                         # Set the parent
 
-                         parent_node = None
 
-                         
 
-                         if not (possible_parent_nodes):
 
-                             parent_node = create_inheritance_node(pb, bone.parent.name, bone_inherit_node, node_tree)
 
-                         else:
 
-                             for ppn in possible_parent_nodes:
 
-                                 # check if it has the right connected, inherit scale, inherit rotation
 
-                                 if ppn.inputs["Connected"].default_value  != pb.bone.use_connect:
 
-                                     continue
 
-                                 if ppn.inputs["Inherit Scale"].default_value != pb.bone.inherit_scale:
 
-                                     continue
 
-                                 if ppn.inputs["Inherit Rotation"].default_value != pb.bone.use_inherit_rotation:
 
-                                     continue
 
-                                 parent_node = ppn; break
 
-                             else:
 
-                                 parent_node = create_inheritance_node(pb, bone.parent.name, bone_inherit_node, node_tree)
 
-                         
 
-                         print("Got parent node", time() - milestone); milestone=time()
 
-                         if parent_node is None:
 
-                             raise RuntimeError("No parent node?")
 
-                     else: # This is a root
 
-                         prOrange("else this is a root",time() - milestone); milestone=time()
 
-                         parent_node = node_tree.nodes.new("linkInherit")
 
-                         # root_child = node_tree.nodes.new("linkInherit")
 
-                         node_tree.links.new(parent_node.outputs["Inheritance"], bone_node.inputs['Relationship'])
 
-                         # node_tree.links.new(bone_node.outputs["xForm Out"], root_child.inputs['Parent'])
 
-                         node_tree.links.new(armature.outputs["xForm Out"], parent_node.inputs['Parent'])
 
-                 
 
-                         parent_node.inputs["Inherit Rotation"].default_value = True
 
-                         parent_node.location = (200, 0)
 
-                         bone_node.location = (400, 0)
 
-                         # root_child.location = (600, 0)
 
-                         
 
-                         # bone_inherit_node[bone_node.name]=[root_child]
 
-                     
 
-                     bone_node.inputs["Lock Location"].default_value = pb.lock_location
 
-                     bone_node.inputs["Lock Rotation"].default_value = pb.lock_rotation
 
-                     bone_node.inputs["Lock Scale"].default_value    = pb.lock_scale
 
-                     setup_custom_properties(bone_node, pb)
 
-                     setup_ik_settings(bone_node, pb)
 
-                     setup_vp_settings(bone_node, pb, do_after, node_tree)
 
-                     setup_df_settings(bone_node, pb)
 
-                     # BBONES
 
-                     bone_node.inputs["BBone X Size"].default_value = pb.bone.bbone_x
 
-                     bone_node.inputs["BBone Z Size"].default_value = pb.bone.bbone_z
 
-                     bone_node.inputs["BBone Segments"].default_value = pb.bone.bbone_segments
 
-                     if pb.bone.bbone_mapping_mode == "CURVED":
 
-                         bone_node.inputs["BBone HQ Deformation"].default_value = True
 
-                     bone_node.inputs["BBone Start Handle Type"].default_value = pb.bone.bbone_handle_type_start
 
-                     bone_node.inputs["BBone End Handle Type"].default_value = pb.bone.bbone_handle_type_end
 
-                     bone_node.inputs["BBone Custom Start Handle"].default_value = pb.bone.bbone_handle_type_start
 
-                     bone_node.inputs["BBone Custom End Handle"].default_value = pb.bone.bbone_handle_type_end
 
-                     
 
-                     bone_node.inputs["BBone X Curve-In"].default_value = pb.bone.bbone_curveinx
 
-                     bone_node.inputs["BBone Z Curve-In"].default_value = pb.bone.bbone_curveinz
 
-                     bone_node.inputs["BBone X Curve-Out"].default_value = pb.bone.bbone_curveoutx
 
-                     bone_node.inputs["BBone Z Curve-Out"].default_value = pb.bone.bbone_curveoutz
 
-                     prRed("BBone Implementation is not complete, expect errors and missing features for now")
 
-                     
 
-                     #
 
-                     for c in pb.constraints:
 
-                         prWhite("constraint %s for %s" % (c.name, pb.name), time() - milestone); milestone=time()
 
-                         # make relationship nodes and set up links...
 
-                         if ( c_node := create_relationship_node_for_constraint(node_tree, c)):
 
-                             c_node.label = c.name
 
-                             # this node definitely has a parent inherit node.
 
-                             c_node.location = parent_node.location; c_node.location.x += 200
 
-                             
 
-                             try:
 
-                                 node_tree.links.new(parent_node.outputs["Inheritance"], c_node.inputs['Input Relationship'])
 
-                             except KeyError: # not a inherit node anymore
 
-                                 node_tree.links.new(parent_node.outputs["Output Relationship"], c_node.inputs['Input Relationship'])
 
-                             parent_node = c_node
 
-                             
 
-                             #Target Tasks:
 
-                             if (hasattr(c, "target") and not hasattr(c, "subtarget")):
 
-                                 do_after.append( ("Object Target", c_node.name , c.target.name ) )
 
-                             if (hasattr(c, "subtarget")):
 
-                                 if c.target and c.subtarget: # this node has a target, find the node associated with it... 
 
-                                     do_after.append( ("Target", c_node.name , c.subtarget ) )
 
-                                 else:
 
-                                     do_after.append( ("Object Target", c_node.name , c.target.name ) )
 
-                             if (hasattr(c, "pole_subtarget")):
 
-                                 if c.pole_target and c.pole_subtarget: # this node has a pole target, find the node associated with it... 
 
-                                     do_after.append( ("Pole Target", c_node.name , c.pole_subtarget ) )
 
-                             fill_parameters(c_node, c, context)
 
-                             if (hasattr(c, "targets")): # Armature Modifier, annoying.
 
-                                 for i in range(len(c.targets)):
 
-                                     if (c.targets[i].subtarget):
 
-                                         do_after.append( ("Target."+str(i).zfill(3), c_node.name , c.targets[i].subtarget ) )
 
-                             # Driver Tasks
 
-                             if armOb.animation_data:
 
-                                 for fc in armOb.animation_data.drivers:
 
-                                     pb_string = fc.data_path.split("[\"")[1]; pb_string = pb_string.split("\"]")[0]
 
-                                     try:
 
-                                         c_string = fc.data_path.split("[\"")[2]; c_string = c_string.split("\"]")[0]
 
-                                         do_after.append ( ("driver", bone_node.name, c_node.name) )
 
-                                     except IndexError: # the above expects .pose.bones["some name"].constraints["some constraint"]
 
-                                         do_after.append ( ("driver", bone_node.name, bone_node.name) ) # it's a property I guess
 
-                     try:
 
-                         node_tree.links.new(parent_node.outputs["Inheritance"], bone_node.inputs['Relationship'])
 
-                     except KeyError: # may have changed, see above
 
-                         node_tree.links.new(parent_node.outputs["Output Relationship"], bone_node.inputs['Relationship'])
 
-                     bone_node.location = (400 + parent_node.location.x, -200*y_distance + parent_node.location.y)
 
-                     prPurple("iteration: ", time() - iter_start)
 
-                 finished_drivers = set()
 
-                 switches, driver_vars, fcurves, drivers = [],[],[],[]
 
-         
 
-         # Now do the tasks.
 
-         for (task, in_node_name, out_node_name) in do_after:
 
-             prOrange(task, in_node_name, out_node_name)
 
-             prPurple(len(node_tree.nodes))
 
-             if task in ['Object Target']:
 
-                 in_node  = node_tree.nodes[ in_node_name ]
 
-                 out_node= node_tree.nodes.new("InputExistingGeometryObject")
 
-                 out_node.inputs["Name"].default_value=out_node_name
 
-                 node_tree.links.new(out_node.outputs["Object"], in_node.inputs["Target"])
 
-             if task in ['Target', 'Pole Target']:
 
-                 in_node  = node_tree.nodes[ in_node_name ]
 
-                 try:
 
-                     out_node = node_tree.nodes[ out_node_name ]
 
-                 except KeyError:
 
-                     prRed (f"Failed to find node: {out_node_name} as pole target for node: {in_node_name} and input {task}")
 
-                 #
 
-                 node_tree.links.new(out_node.outputs["xForm Out"], in_node.inputs[task])
 
-             elif (task[:6] == 'Target'):
 
-                 in_node  = node_tree.nodes[ in_node_name ]
 
-                 out_node = node_tree.nodes[ out_node_name ]
 
-                 #
 
-                 node_tree.links.new(out_node.outputs["xForm Out"], in_node.inputs[task])
 
-             elif task in ["Custom Object xForm Override"]:
 
-                 shape_xform_n = None
 
-                 for n in node_tree.nodes:
 
-                     if n.name == out_node_name:
 
-                         shape_xform_n = n
 
-                         node_tree.links.new(shape_xform_n.outputs["xForm Out"], node_tree.nodes[in_node_name].inputs['Custom Object xForm Override'])
 
-                         break
 
-                 else: # make it a task
 
-                     prRed("Cannot set custom object transform override for %s to %s" % (in_node_name, out_node_name))
 
-                 
 
-             elif task in ["driver"]:
 
-                 create_driver(in_node_name, out_node_name, armOb, finished_drivers, switches, driver_vars, fcurves, drivers, node_tree, context)
 
-                         
 
-             # annoyingly, Rigify uses f-modifiers to setup its fcurves
 
-             # I do not intend to support fcurve modifiers in Mantis at this time
 
-         
 
-         for node in node_tree.nodes:
 
-             if (node == world_in):
 
-                 continue
 
-             node.select = False
 
-         node_tree.nodes.active = world_in
 
-         
 
-         prGreen("Finished generating %d nodes in %f seconds." % (len(node_tree.nodes), time() - start))
 
-         #bpy.ops.node.cleanup()
 
-         node_tree.do_live_update = True
 
- class GenerateMantisTree(Operator):
 
-     """Generate Mantis Tree From Selected"""
 
-     bl_idname = "mantis.generate_tree"
 
-     bl_label = "Generate Mantis Tree from Selected"
 
-     @classmethod
 
-     def poll(cls, context):
 
-         return (mantis_poll_op(context))
 
-     def execute(self, context):
 
-         space = context.space_data
 
-         path = space.path
 
-         node_tree = space.path[len(path)-1].node_tree
 
-         
 
-         do_profile=False
 
-         
 
-         import cProfile
 
-         from os import environ
 
-         print (environ.get("DOPROFILE"))
 
-         if environ.get("DOPROFILE"):
 
-             do_profile=True
 
-         if do_profile:
 
-             cProfile.runctx("do_generate_armature(context, node_tree)", None, locals())
 
-         else:
 
-             do_generate_armature(context, node_tree)
 
-         return {"FINISHED"}
 
-         
 
-         
 
-         return {"FINISHED"}
 
 
  |