| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092 |
- #fool: should be wrColor like prColor... dumb
- def wrapRed(skk): return "\033[91m{}\033[00m".format(skk)
- def wrapGreen(skk): return "\033[92m{}\033[00m".format(skk)
- def wrapPurple(skk): return "\033[95m{}\033[00m".format(skk)
- def wrapWhite(skk): return "\033[97m{}\033[00m".format(skk)
- def wrapOrange(skk): return "\033[0;33m{}\033[00m".format(skk)
- # these should reimplement the print interface..
- def prRed(*args): print (*[wrapRed(arg) for arg in args])
- def prGreen(*args): print (*[wrapGreen(arg) for arg in args])
- def prPurple(*args): print (*[wrapPurple(arg) for arg in args])
- def prWhite(*args): print (*[wrapWhite(arg) for arg in args])
- def prOrange(*args): print (*[wrapOrange(arg) for arg in args])
- # add THIS to the top of a file for easy access:
- # from mantis.utilities import (prRed, prGreen, prPurple, prWhite,
- # prOrange,
- # wrapRed, wrapGreen, wrapPurple, wrapWhite,
- # wrapOrange,)
- # A fuction for getting to the end of a Reroute.
- # TODO: this seems really inefficient!
- def socket_seek(start_link, links):
- link = start_link
- while(link.from_socket):
- for newlink in links:
- if link.from_socket.node.inputs:
- if newlink.to_socket == link.from_socket.node.inputs[0]:
- link=newlink; break
- else:
- break
- return link.from_socket
- # this creates fake links that have the same interface as Blender's
- # so that I can bypass Reroutes
- def clear_reroutes(links):
- from .base_definitions import DummyLink
- kept_links, rerouted_starts = [], []
- rerouted = []
- all_links = links.copy()
- while(all_links):
- link = all_links.pop()
- to_cls = link.to_socket.node.bl_idname
- from_cls = link.from_socket.node.bl_idname
- reroute_classes = ["NodeReroute"]
- if (to_cls in reroute_classes and
- from_cls in reroute_classes):
- rerouted.append(link)
- elif (to_cls in reroute_classes and not
- from_cls in reroute_classes):
- rerouted.append(link)
- elif (from_cls in reroute_classes and not
- to_cls in reroute_classes):
- rerouted_starts.append(link)
- else:
- kept_links.append(link)
- for start in rerouted_starts:
- from_socket = socket_seek(start, rerouted)
- new_link = DummyLink(from_socket=from_socket, to_socket=start.to_socket, nc_from=None, nc_to=None, multi_input_sort_id=start.multi_input_sort_id )
- kept_links.append(new_link)
- return kept_links
- def tree_from_nc(sig, base_tree):
- if (sig[0] == 'MANTIS_AUTOGENERATED'):
- sig = sig[:-2] # cut off the end part of the signature (because it uses socket.name and socket.identifier)
- # this will lead to totally untraceble bugs in the event of a change in how signatures are assigned
- tree = base_tree
- for i, path_item in enumerate(sig):
- if (i == 0) or (i == len(sig) - 1):
- continue
- tree = tree.nodes.get(path_item).node_tree
- return tree
-
- def get_node_prototype(sig, base_tree):
- return tree_from_nc(sig, base_tree).nodes.get( sig[-1] )
- ##################################################################################################
- # groups and changing sockets -- this is used extensively by Schema.
- ##################################################################################################
- # this one returns None if there is an error.
- def get_socket_maps(node, force=False):
- maps = [{}, {}]
- node_collection = ["inputs", "outputs"]
- links = ["from_socket", "to_socket"]
- for collection, map, linked_socket in zip(node_collection, maps, links):
- for sock in getattr(node, collection):
- if sock.is_linked:
- other_sockets = []
- # Sort the links first (in case they are mult-input), because Blender doesn't
- links = sorted(list(sock.links), key = lambda l : l.multi_input_sort_id)
- # HACK here because Blender will crash if the socket values in the NodeReroute
- # are mutated. Because this seems to happen in a deffered way, I can't account
- # for it except by checking the node later...
- # TODO: The fact that I need this hack means I can probably solve this problem
- # for all node types in a safer way, since they may also be dynamic somehow
- for l in links:
- if "from" in linked_socket and l.from_node.bl_idname == "NodeReroute":
- other_sockets.append(l.from_node)
- elif "to" in linked_socket and l.to_node.bl_idname == "NodeReroute":
- other_sockets.append(l.to_node)
- else:
- other_sockets.append(getattr(l, linked_socket))
- map[sock.identifier]= other_sockets
- elif hasattr(sock, "default_value"):
- if sock.get("default_value") is not None:
- val = sock['default_value']
- elif sock.bl_idname == "EnumCurveSocket" and sock.get("default_value") is None:
- # HACK I need to add this special case because during file-load,
- # this value is None and should not be altered until it is set once.
- continue
- elif (val := sock.default_value) is not None:
- pass
- elif not force:
- continue
- map[sock.identifier]=val
- else:
- from .socket_definitions import no_default_value
- if sock.bl_idname in no_default_value:
- map[sock.identifier]=None
- else:
- raise RuntimeError(f"ERROR: Could not get socket data for socket of type: {sock.bl_idname}")
- return maps
- # this function is completely overloaded with different purposes and code paths
- # TODO refactor everything that funnels into this function
- # make this stuff simpler.
- def do_relink(node, s, map, in_out='INPUT', parent_name = ''):
- if not node.__class__.is_registered_node_type(): return
- tree = node.id_data; interface_in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT'
- if hasattr(node, "node_tree"):
- tree = node.node_tree
- interface_in_out=in_out
- from bpy.types import NodeSocket, Node
- get_string = '__extend__'
- if s: get_string = s.identifier
- from .base_definitions import SchemaUINode
- if (hasattr(node, "node_tree") or isinstance(node, SchemaUINode)) and get_string not in map.keys():
- # this happens when we are creating a new node group and need to update it from nothing.
- return
- val = map[get_string] # this will throw an error if the socket isn't there. Good!
- if isinstance(val, list):
- for sub_val in val:
- # this will only happen once because it assigns s, so it is safe to do in the for loop.
- if s is None:
- name = unique_socket_name(node, sub_val, tree)
- sock_type = sub_val.bl_idname
- if parent_name:
- interface_socket = update_interface(tree.interface, name, interface_in_out, sock_type, parent_name)
- if in_out =='INPUT':
- s = node.inputs.new(sock_type, name, identifier=interface_socket.identifier)
- else:
- s = node.outputs.new(sock_type, name, identifier=interface_socket.identifier)
- if parent_name == 'Array': s.display_shape='SQUARE_DOT'
- if parent_name == 'Constant': s.display_shape='CIRCLE_DOT'
- # then move it up and delete the other link.
- # this also needs to modify the interface of the node tree.
- if isinstance(sub_val, NodeSocket):
- l = None
- if in_out =='INPUT':
- l = node.id_data.links.new(input=sub_val, output=s)
- else:
- l = node.id_data.links.new(input=s, output=sub_val)
- if l is None:
- raise RuntimeError("Could not create link")
- elif isinstance(sub_val, Node):
- l = None
- # this happens when it is a NodeReroute
- if not s.is_output:
- l = node.id_data.links.new(input=sub_val.outputs[0], output=s)
- else:
- l = node.id_data.links.new(input=s, output=sub_val.inputs[0])
- if l is None:
- raise RuntimeError("Could not create link")
- else:
- raise RuntimeError("Unhandled case in do_relink()")
- elif get_string != "__extend__":
- if not s.is_output:
- try:
- s.default_value = val
- except (AttributeError, ValueError): # must be readonly or maybe it doesn't have a d.v.
- pass
- def update_interface(interface, name, in_out, sock_type, parent_name):
- if parent_name:
- if not (interface_parent := interface.items_tree.get(parent_name)):
- interface_parent = interface.new_panel(name=parent_name)
- socket = interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
- if parent_name == 'Connection':
- in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT' # flip this make sure connections always do both
- interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)
- return socket
- else:
- raise RuntimeError(wrapRed("Cannot add interface item to tree without specifying type."))
- #UGLY BAD REFACTOR
- def relink_socket_map_add_socket(node, socket_collection, item, in_out=None,):
- if not in_out: in_out=item.in_out
- if node.bl_idname in ['MantisSchemaGroup'] and item.parent and item.parent.name == 'Array':
- multi = True if in_out == 'INPUT' else False
- s = socket_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier, use_multi_input=multi)
- else:
- s = socket_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier)
- if item.parent.name == 'Array': s.display_shape = 'SQUARE_DOT'
- elif item.parent.name == 'Constant': s.display_shape='CIRCLE_DOT'
- return s
- # TODO REFACTOR THIS
- # I did this awful thing because I needed the above code
- # but I have provided this interface to Mantis
- # I did not follow the Single Responsibility Principle
- # I am now suffering for it, as I rightly deserve.
- def relink_socket_map(node, socket_collection, map, item, in_out=None,):
- s = relink_socket_map_add_socket(node, socket_collection, item, in_out=None,)
- do_relink(node, s, map)
- def unique_socket_name(node, other_socket, tree):
- name_stem = other_socket.bl_label; num=0
- # if hasattr(other_socket, "default_value"):
- # name_stem = type(other_socket.default_value).__name__
- for item in tree.interface.items_tree:
- if item.item_type == 'PANEL': continue
- if other_socket.is_output and item.in_out == 'INPUT': continue
- if not other_socket.is_output and item.in_out == 'OUTPUT': continue
- if name_stem in item.name: num+=1
- name = name_stem + '.' + str(num).zfill(3)
- return name
- ##############################
- # READ TREE and also Schema Solve!
- ##############################
- # TODO: refactor the following two functions, they should be one function with arguments.
- def init_connections(nc):
- c, hc = [], []
- for i in nc.outputs.values():
- for l in i.links:
- # if l.from_node != nc:
- # continue
- if l.is_hierarchy:
- hc.append(l.to_node)
- c.append(l.to_node)
- nc.hierarchy_connections = hc
- nc.connections = c
- def init_dependencies(nc):
- c, hc = [], []
- for i in nc.inputs.values():
- for l in i.links:
- # if l.to_node != nc:
- # continue
- if l.is_hierarchy:
- hc.append(l.from_node)
- c.append(l.from_node)
- nc.hierarchy_dependencies = hc
- nc.dependencies = c
- def schema_dependency_handle_item(schema, all_nc, item,):
- hierarchy = True
- from .base_definitions import from_name_filter, to_name_filter
- if item.in_out == 'INPUT':
- dependencies = schema.dependencies
- hierarchy_dependencies = schema.hierarchy_dependencies
- if item.parent and item.parent.name == 'Array':
- for schema_idname in ['SchemaArrayInput', 'SchemaArrayInputGet', 'SchemaArrayInputAll']:
- if (nc := all_nc.get( (*schema.signature, schema_idname) )):
- for to_link in nc.outputs[item.name].links:
- if to_link.to_socket in to_name_filter:
- # hierarchy_reason='a'
- hierarchy = False
- for from_link in schema.inputs[item.identifier].links:
- if from_link.from_socket in from_name_filter:
- hierarchy = False
- # hierarchy_reason='b'
- if from_link.from_node not in dependencies:
- if hierarchy:
- hierarchy_dependencies.append(from_link.from_node)
- dependencies.append(from_link.from_node)
- if item.parent and item.parent.name == 'Constant':
- if nc := all_nc.get((*schema.signature, 'SchemaConstInput')):
- for to_link in nc.outputs[item.name].links:
- if to_link.to_socket in to_name_filter:
- # hierarchy_reason='dependencies'
- hierarchy = False
- for from_link in schema.inputs[item.identifier].links:
- if from_link.from_socket in from_name_filter:
- # hierarchy_reason='d'
- hierarchy = False
- if from_link.from_node not in dependencies:
- if hierarchy:
- hierarchy_dependencies.append(from_link.from_node)
- dependencies.append(from_link.from_node)
- if item.parent and item.parent.name == 'Connection':
- if nc := all_nc.get((*schema.signature, 'SchemaIncomingConnection')):
- for to_link in nc.outputs[item.name].links:
- if to_link.to_socket in to_name_filter:
- # hierarchy_reason='e'
- hierarchy = False
- for from_link in schema.inputs[item.identifier].links:
- if from_link.from_socket in from_name_filter:
- # hierarchy_reason='f'
- hierarchy = False
- if from_link.from_node not in dependencies:
- if hierarchy:
- hierarchy_dependencies.append(from_link.from_node)
- dependencies.append(from_link.from_node)
- def init_schema_dependencies(schema, all_nc):
- """ Initialize the dependencies for Schema, and mark them as hierarchy or non-hierarchy dependencies
- Non-hierarchy dependencies are e.g. drivers and custom transforms.
- """
- tree = schema.prototype.node_tree
- if tree is None:
- raise RuntimeError(f"Cannot get dependencies for schema {schema}")
- schema.dependencies = []
- schema.hierarchy_dependencies = []
- for l in schema.inputs["Schema Length"].links:
- schema.hierarchy_dependencies.append(l.from_node)
- if tree.interface:
- for item in tree.interface.items_tree:
- if item.item_type == 'PANEL':
- continue
- schema_dependency_handle_item(schema, all_nc, item,)
- def check_and_add_root(n, roots, include_non_hierarchy=False):
- if (include_non_hierarchy * len(n.dependencies)) > 0:
- return
- elif len(n.hierarchy_dependencies) > 0:
- return
- roots.append(n)
- def get_link_in_out(link):
- from .base_definitions import replace_types
- from_name, to_name = link.from_socket.node.name, link.to_socket.node.name
- # catch special bl_idnames and bunch the connections up
- if link.from_socket.node.bl_idname in replace_types:
- from_name = link.from_socket.node.bl_idname
- if link.to_socket.node.bl_idname in replace_types:
- to_name = link.to_socket.node.bl_idname
- return from_name, to_name
- def link_node_containers(tree_path_names, link, local_nc, from_suffix='', to_suffix=''):
- dummy_types = ["DUMMY", "DUMMY_SCHEMA"]
- from_name, to_name = get_link_in_out(link)
- nc_from = local_nc.get( (*tree_path_names, from_name+from_suffix) )
- nc_to = local_nc.get( (*tree_path_names, to_name+to_suffix))
- if (nc_from and nc_to):
- from_s, to_s = link.from_socket.name, link.to_socket.name
- if nc_to.node_type in dummy_types: to_s = link.to_socket.identifier
- if nc_from.node_type in dummy_types: from_s = link.from_socket.identifier
- try:
- connection = nc_from.outputs[from_s].connect(node=nc_to, socket=to_s, sort_id=link.multi_input_sort_id)
- if connection is None:
- prWhite(f"Already connected: {from_name}:{from_s}->{to_name}:{to_s}")
- return connection
- except KeyError as e:
- prRed(f"{nc_from}:{from_s} or {nc_to}:{to_s} missing; review the connections printed below:")
- print (nc_from.outputs.keys())
- print (nc_to.inputs.keys())
- raise e
- else:
- prRed(nc_from, nc_to, (*tree_path_names, from_name+from_suffix), (*tree_path_names, to_name+to_suffix))
- raise RuntimeError(wrapRed("Link not connected: %s -> %s in tree %s" % (from_name, to_name, tree_path_names[-1])))
-
- def get_all_dependencies(nc):
- from .base_definitions import GraphError
- """ find all dependencies for a mantis node"""
- nodes = []
- check_nodes = [nc]
- nodes_checked = set()
- while (len(check_nodes) > 0):
- node = check_nodes.pop()
- nodes_checked.add (node)
- connected_nodes = node.hierarchy_dependencies
- for new_node in connected_nodes:
- if new_node in nodes:
- continue
- nodes.append(new_node)
- if new_node not in nodes_checked:
- check_nodes.append(new_node)
- return nodes
-
- def get_all_nodes_of_type(base_tree, bl_idname):
- nodes = []
- check_nodes = list(base_tree.nodes)
- while (len(check_nodes) > 0):
- node = check_nodes.pop()
- if node.bl_idname in bl_idname:
- nodes.append(node)
- if hasattr(node, "node_tree"):
- check_nodes.extend(list(node.node_tree.nodes))
- return nodes
-
- ##################################################################################################
- # misc
- ##################################################################################################
- # TODO: get the matrix to return a mathutils.Matrix so I don't need a function call here
- def to_mathutils_value(socket):
- if hasattr(socket, "default_value"):
- val = socket.default_value
- if socket.bl_idname in ['MatrixSocket']:
- return socket.TellValue()
- else:
- return val
- else:
- return None
- def all_trees_in_tree(base_tree, selected=False):
- """ Recursively finds all trees referenced in a given base-tree."""
- # note that this is recursive but not by tail-end recursion
- # a while-loop is a better way to do recursion in Python.
- trees = [base_tree]
- can_descend = True
- check_trees = [base_tree]
- while (len(check_trees) > 0): # this seems innefficient, why 2 loops?
- new_trees = []
- while (len(check_trees) > 0):
- tree = check_trees.pop()
- for node in tree.nodes:
- if selected == True and node.select == False:
- continue
- if new_tree := getattr(node, "node_tree", None):
- if new_tree in trees: continue
- new_trees.append(new_tree)
- trees.append(new_tree)
- check_trees = new_trees
- return trees
- # this is a destructive operation, not a pure function or whatever. That isn't good but I don't care.
- def SugiyamaGraph(tree, iterations):
- from grandalf.graphs import Vertex, Edge, Graph, graph_core
- class defaultview(object):
- w,h = 1,1
- xz = (0,0)
-
- no_links = set()
- verts = {}
- for n in tree.nodes:
- has_links=False
- for inp in n.inputs:
- if inp.is_linked:
- has_links=True
- break
- else:
- no_links.add(n.name)
- for out in n.outputs:
- if out.is_linked:
- has_links=True
- break
- else:
- try:
- no_links.remove(n.name)
- except KeyError:
- pass
- if not has_links:
- continue
-
- v = Vertex(n.name)
- v.view = defaultview()
- v.view.xy = n.location
- v.view.h = n.height*2.5
- v.view.w = n.width*2.2
- verts[n.name] = v
-
- edges = []
- for link in tree.links:
- weight = 1 # maybe this is useful
- edges.append(Edge(verts[link.from_node.name], verts[link.to_node.name], weight) )
- graph = Graph(verts.values(), edges)
- from grandalf.layouts import SugiyamaLayout
- sug = SugiyamaLayout(graph.C[0]) # no idea what .C[0] is
- roots=[]
- for node in tree.nodes:
-
- has_links=False
- for inp in node.inputs:
- if inp.is_linked:
- has_links=True
- break
- for out in node.outputs:
- if out.is_linked:
- has_links=True
- break
- if not has_links:
- continue
-
- if len(node.inputs)==0:
- roots.append(verts[node.name])
- else:
- for inp in node.inputs:
- if inp.is_linked==True:
- break
- else:
- roots.append(verts[node.name])
-
- sug.init_all(roots=roots,)
- sug.draw(iterations)
- for v in graph.C[0].sV:
- for n in tree.nodes:
- if n.name == v.data:
- n.location.x = v.view.xy[1]
- n.location.y = v.view.xy[0]
-
- # now we can take all the input nodes and try to put them in a sensible place
- for n_name in no_links:
- n = tree.nodes.get(n_name)
- next_n = None
- next_node = None
- for output in n.outputs:
- if output.is_linked == True:
- next_node = output.links[0].to_node
- break
- # let's see if the next node
- if next_node:
- # need to find the other node in the same layer...
- other_node = None
- for s_input in next_node.inputs:
- if s_input.is_linked:
- other_node = s_input.links[0].from_node
- if other_node is n:
- continue
- else:
- break
- if other_node:
- n.location = other_node.location
- n.location.y -= other_node.height*2
- else: # we'll just position it next to the next node
- n.location = next_node.location
- n.location.x -= next_node.width*1.5
-
- def project_point_to_plane(point, origin, normal):
- return point - normal.dot(point- origin)*normal
- ##################################################################################################
- # stuff I should probably refactor!!
- ##################################################################################################
- # This is really, really stupid way to do this
- def gen_nc_input_for_data(socket):
- # Class List #TODO deduplicate
- from . import xForm_containers, link_containers, misc_nodes, primitives_containers, deformer_containers, math_containers, schema_containers
- from .internal_containers import NoOpNode
- classes = {}
- for module in [xForm_containers, link_containers, misc_nodes, primitives_containers, deformer_containers, math_containers, schema_containers]:
- for cls in module.TellClasses():
- classes[cls.__name__] = cls
- #
- socket_class_map = {
- "MatrixSocket" : classes["InputMatrix"],
- "xFormSocket" : None,
- "RelationshipSocket" : NoOpNode,
- "DeformerSocket" : NoOpNode,
- "GeometrySocket" : classes["InputExistingGeometryData"],
- "EnableSocket" : classes["InputBoolean"],
- "HideSocket" : classes["InputBoolean"],
- #
- "DriverSocket" : None,
- "DriverVariableSocket" : None,
- "FCurveSocket" : None,
- "KeyframeSocket" : None,
- "BoneCollectionSocket" : classes["InputString"],
- #
- "xFormParameterSocket" : None,
- "ParameterBoolSocket" : classes["InputBoolean"],
- "ParameterIntSocket" : classes["InputFloat"], #TODO: make an Int node for this
- "ParameterFloatSocket" : classes["InputFloat"],
- "ParameterVectorSocket" : classes["InputVector"],
- "ParameterStringSocket" : classes["InputString"],
- #
- "TransformSpaceSocket" : classes["InputTransformSpace"],
- "BooleanSocket" : classes["InputBoolean"],
- "BooleanThreeTupleSocket" : classes["InputBooleanThreeTuple"],
- "RotationOrderSocket" : classes["InputRotationOrder"],
- "QuaternionSocket" : None,
- "QuaternionSocketAA" : None,
- "UnsignedIntSocket" : classes["InputFloat"],
- "IntSocket" : classes["InputFloat"],
- "StringSocket" : classes["InputString"],
- #
- "BoolUpdateParentNode" : classes["InputBoolean"],
- "IKChainLengthSocket" : classes["InputFloat"],
- "EnumInheritScale" : classes["InputString"],
- "EnumRotationMix" : classes["InputString"],
- "EnumRotationMixCopyTransforms" : classes["InputString"],
- "EnumMaintainVolumeStretchTo" : classes["InputString"],
- "EnumRotationStretchTo" : classes["InputString"],
- "EnumTrackAxis" : classes["InputString"],
- "EnumUpAxis" : classes["InputString"],
- "EnumLockAxis" : classes["InputString"],
- "EnumLimitMode" : classes["InputString"],
- "EnumYScaleMode" : classes["InputString"],
- "EnumXZScaleMode" : classes["InputString"],
- "EnumCurveSocket" : classes["InputString"],
- "EnumMetaRigSocket" : classes["InputString"],
- # Deformers
- "EnumSkinning" : classes["InputString"],
- #
- "FloatSocket" : classes["InputFloat"],
- "FloatFactorSocket" : classes["InputFloat"],
- "FloatPositiveSocket" : classes["InputFloat"],
- "FloatAngleSocket" : classes["InputFloat"],
- "VectorSocket" : classes["InputVector"],
- "VectorEulerSocket" : classes["InputVector"],
- "VectorTranslationSocket" : classes["InputVector"],
- "VectorScaleSocket" : classes["InputVector"],
- # Drivers
- "EnumDriverVariableType" : classes["InputString"],
- "EnumDriverVariableEvaluationSpace" : classes["InputString"],
- "EnumDriverRotationMode" : classes["InputString"],
- "EnumDriverType" : classes["InputString"],
- "EnumKeyframeInterpTypeSocket" : classes["InputString"],
- "EnumKeyframeBezierHandleTypeSocket" : classes["InputString"],
- # Math
- "MathFloatOperation" : classes["InputString"],
- "MathVectorOperation" : classes["InputString"],
- "MatrixTransformOperation" : classes["InputString"],
- # Schema
- "WildcardSocket" : None,
- }
- return socket_class_map.get(socket.bl_idname, None)
- ####################################
- # CURVE STUFF
- ####################################
- def make_perpendicular(v1, v2):
- projected = (v2.dot(v1) / v1.dot(v1)) * v1
- perpendicular = v2 - projected
- return perpendicular
- # this stuff could be branchless but I don't use it much TODO
- def cap(val, maxValue):
- if (val > maxValue):
- return maxValue
- return val
- def capMin(val, minValue):
- if (val < minValue):
- return minValue
- return val
- def wrap(min : float, max : float, value: float) -> float:
- range = max-min; remainder = value % range
- if remainder > max: return min + remainder-max
- else: return remainder
- def lerpVal(a, b, fac = 0.5):
- return a + ( (b-a) * fac)
- #wtf this doesn't do anything even remotely similar to wrap
- # HACK BAD FIXME UNBREAK ME BAD
- # I don't understand what this function does but I am using it in multiple places?
- def old_bad_wrap_that_should_be_refactored(val, maxValue, minValue = None):
- if (val > maxValue):
- return (-1 * ((maxValue - val) + 1))
- if ((minValue) and (val < minValue)):
- return (val + maxValue)
- return val
- #TODO clean this up
- def RibbonMeshEdgeLengths(m, ribbon):
- tE = ribbon[0]; bE = ribbon[1]; c = ribbon[2]
- lengths = []
- for i in range( len( tE ) ): #tE and bE are same length
- if (c == True):
- v1NextInd = tE[old_bad_wrap_that_should_be_refactored((i+1), len(tE) - 1)]
- else:
- v1NextInd = tE[cap((i+1) , len(tE) - 1 )]
- v1 = m.vertices[tE[i]]; v1Next = m.vertices[v1NextInd]
- if (c == True):
- v2NextInd = bE[old_bad_wrap_that_should_be_refactored((i+1), len(bE) - 1)]
- else:
- v2NextInd = bE[cap((i+1) , len(bE) - 1 )]
- v2 = m.vertices[bE[i]]; v2Next = m.vertices[v2NextInd]
-
- v = v1.co.lerp(v2.co, 0.5); vNext = v1Next.co.lerp(v2Next.co, 0.5)
- # get the center, edges may not be straight so total length
- # of one edge may be more than the ribbon center's length
- lengths.append(( v - vNext ).length)
- return lengths
- def EnsureCurveIsRibbon(crv, defaultRadius = 0.1):
- crvRadius = 0
- crv.data.offset = 0
- if (crv.data.bevel_depth == 0):
- crvRadius = crv.data.extrude
- else: #Set ribbon from bevel depth
- crvRadius = crv.data.bevel_depth
- crv.data.bevel_depth = 0
- crv.data.extrude = crvRadius
- if (crvRadius == 0):
- crv.data.extrude = defaultRadius
- def SetRibbonData(m, ribbon):
- #maybe this could be incorporated into the DetectWireEdges function?
- #maybe I can check for closed poly curves here? under what other circumstance
- # will I find the ends of the wire have identical coordinates?
- ribbonData = []
- tE = ribbon[0].copy(); bE = ribbon[1].copy()# circle = ribbon[2]
- #
- lengths = RibbonMeshEdgeLengths(m, ribbon)
- lengths.append(0)
- totalLength = sum(lengths)
- # m.calc_normals() #calculate normals
- # it appears this has been removed.
- for i, (t, b) in enumerate(zip(tE, bE)):
- ind = old_bad_wrap_that_should_be_refactored( (i + 1), len(tE) - 1 )
- tNext = tE[ind]; bNext = bE[ind]
- ribbonData.append( ( (t,b), (tNext, bNext), lengths[i] ) )
- #if this is a circle, the last v in vertData has a length, otherwise 0
- return ribbonData, totalLength
- def WireMeshEdgeLengths(m, wire):
- circle = False
- vIndex = wire.copy()
- for e in m.edges:
- if ((e.vertices[0] == vIndex[-1]) and (e.vertices[1] == vIndex[0])):
- #this checks for an edge between the first and last vertex in the wire
- circle = True
- break
- lengths = []
- for i in range(len(vIndex)):
- v = m.vertices[vIndex[i]]
- if (circle == True):
- vNextInd = vIndex[old_bad_wrap_that_should_be_refactored((i+1), len(vIndex) - 1)]
- else:
- vNextInd = vIndex[cap((i+1), len(vIndex) - 1 )]
- vNext = m.vertices[vNextInd]
- lengths.append(( v.co - vNext.co ).length)
- #if this is a circular wire mesh, this should wrap instead of cap
- return lengths
- def GetDataFromWire(m, wire):
- vertData = []
- vIndex = wire.copy()
- lengths = WireMeshEdgeLengths(m, wire)
- lengths.append(0)
- totalLength = sum(lengths)
- for i, vInd in enumerate(vIndex):
- #-1 to avoid IndexError
- vNext = vIndex[ (old_bad_wrap_that_should_be_refactored(i+1, len(vIndex) - 1)) ]
- vertData.append((vInd, vNext, lengths[i]))
- #if this is a circle, the last v in vertData has a length, otherwise 0
- return vertData, totalLength
- def DetectWireEdges(mesh):
- # Returns a list of vertex indices belonging to wire meshes
- # NOTE: this assumes a mesh object with only wire meshes
- ret = []
- import bmesh
- bm = bmesh.new()
- try:
- bm.from_mesh(mesh)
- ends = []
- for v in bm.verts:
- if (len(v.link_edges) == 1):
- ends.append(v.index)
- for e in bm.edges:
- assert (e.is_wire == True),"This function can only run on wire meshes"
- if (e.verts[1].index - e.verts[0].index != 1):
- ends.append(e.verts[1].index)
- ends.append(e.verts[0].index)
- for i in range(len(ends)//2): # // is floor division
- beg = ends[i*2]
- end = ends[(i*2)+1]
- indices = [(j + beg) for j in range ((end - beg) + 1)]
- ret.append(indices)
- finally:
- bm.free()
- return ret
- def FindNearestPointOnWireMesh(m, pointsList):
- from mathutils import Vector
- from mathutils.geometry import intersect_point_line
- from math import sqrt
- wires = DetectWireEdges(m)
- ret = []
- # prevFactor = None
- for wire, points in zip(wires, pointsList):
- vertData, total_length = GetDataFromWire(m, wire)
- factorsOut = []
- for p in points:
- prevDist = float('inf')
- curDist = float('inf')
- v1 = None
- v2 = None
- for i in range(len(vertData) - 1):
- #but it shouldn't check the last one
- if (p == m.vertices[i].co):
- v1 = vertData[i]
- v2 = vertData[i+1]
- offset = 0
- break
- else:
- curDist = ( ((m.vertices[vertData[i][0]].co - p).length) +
- ((m.vertices[vertData[i][1]].co - p).length) )/2
- if (curDist < prevDist):
- v1 = vertData[i]
- v2 = vertData[i+1]
- prevDist = curDist
- offset = intersect_point_line(p, m.vertices[v1[0]].co,
- m.vertices[v2[0]].co)[1]
- if (offset < 0):
- offset = 0
- elif (offset > 1):
- offset = 1
- # Assume the vertices are in order
- v1Length = 0
- v2Length = v2[2]
- for i in range(v1[0]):
- v1Length += vertData[i][2]
- factor = ((offset * (v2Length)) + v1Length )/total_length
- factor = wrap(0, 1, factor) # doesn't hurt to wrap it if it's over 1 or less than 0
- factorsOut.append(factor)
- ret.append( factorsOut )
- return ret
- def mesh_from_curve(crv, context, ribbon=True):
- """Utility function for converting a mesh to a curve
- which will return the correct mesh even with modifiers"""
- import bpy
- m = None
- bevel = crv.data.bevel_depth
- extrude = crv.data.extrude
- offset = crv.data.offset
- try:
- if (len(crv.modifiers) > 0):
- do_unlink = False
- if (not context.scene.collection.all_objects.get(crv.name)):
- context.collection.objects.link(crv) # i guess this forces the dg to update it?
- do_unlink = True
- dg = context.view_layer.depsgraph
- # just gonna modify it for now lol
- if ribbon:
- EnsureCurveIsRibbon(crv)
- else:
- crv.data.bevel_depth=0
- crv.data.extrude=0
- crv.data.offset=0
- # try:
- dg.update()
- mOb = crv.evaluated_get(dg)
- m = bpy.data.meshes.new_from_object(mOb)
- m.name=crv.data.name+'_mesh'
- if (do_unlink):
- context.collection.objects.unlink(crv)
- else: # (ಥ﹏ಥ) why can't I just use this !
- # for now I will just do it like this
- if ribbon:
- EnsureCurveIsRibbon(crv)
- else:
- crv.data.bevel_depth=0
- crv.data.extrude=0
- crv.data.offset=0
- m = bpy.data.meshes.new_from_object(crv)
- finally:
- crv.data.bevel_depth = bevel
- crv.data.extrude = extrude
- crv.data.offset = offset
- return m
- def DetectRibbon(f, bm, skipMe):
- fFirst = f.index
- cont = True
- circle = False
- tEdge, bEdge = [],[]
- while (cont == True):
- skipMe.add(f.index)
- tEdge.append (f.loops[0].vert.index) # top-left
- bEdge.append (f.loops[3].vert.index) # bottom-left
- nEdge = bm.edges.get([f.loops[1].vert, f.loops[2].vert])
- nFaces = nEdge.link_faces
- if (len(nFaces) == 1):
- cont = False
- else:
- for nFace in nFaces:
- if (nFace != f):
- f = nFace
- break
- if (f.index == fFirst):
- cont = False
- circle = True
- if (cont == False): # we've reached the end, get the last two:
- tEdge.append (f.loops[1].vert.index) # top-right
- bEdge.append (f.loops[2].vert.index) # bottom-right
- # this will create a loop for rings --
- # "the first shall be the last and the last shall be first"
- return (tEdge,bEdge,circle)
- def DetectRibbons(m, fReport = None):
- # Returns list of vertex indices belonging to ribbon mesh edges
- # NOTE: this assumes a mesh object with only ribbon meshes
- # ---DO NOT call this script with a mesh that isn't a ribbon!--- #
- import bmesh
- bm = bmesh.new()
- bm.from_mesh(m)
- mIslands, mIsland = [], []
- skipMe = set()
- bm.faces.ensure_lookup_table()
- #first, get a list of mesh islands
- for f in bm.faces:
- if (f.index in skipMe):
- continue #already done here
- checkMe = [f]
- while (len(checkMe) > 0):
- facesFound = 0
- for f in checkMe:
- if (f.index in skipMe):
- continue #already done here
- mIsland.append(f)
- skipMe.add(f.index)
- for e in f.edges:
- checkMe += e.link_faces
- if (facesFound == 0):
- #this is the last iteration
- mIslands.append(mIsland)
- checkMe, mIsland = [], []
- ribbons = []
- skipMe = set() # to store ends already checked
- for mIsl in mIslands:
- ribbon = None
- first = float('inf')
- for f in mIsl:
- if (f.index in skipMe):
- continue #already done here
- if (f.index < first):
- first = f.index
- adjF = 0
- for e in f.edges:
- adjF+= (len(e.link_faces) - 1)
- # every face other than this one is added to the list
- if (adjF == 1):
- ribbon = (DetectRibbon(f, bm, skipMe) )
- break
- if (ribbon == None):
- ribbon = (DetectRibbon(bm.faces[first], bm, skipMe) )
- ribbons.append(ribbon)
- # print (ribbons)
- return ribbons
- def data_from_ribbon_mesh(m, factorsList, mat, ribbons = None, fReport = None):
- #Note, factors list should be equal in length the the number of wires
- #Now working for multiple wires, ugly tho
- if (ribbons == None):
- ribbons = DetectRibbons(m, fReport=fReport)
- if (ribbons is None):
- if (fReport):
- fReport(type = {'ERROR'}, message="No ribbon to get data from.")
- else:
- print ("No ribbon to get data from.")
- return None
- ret = []
- for factors, ribbon in zip(factorsList, ribbons):
- points = []
- widths = []
- normals = []
- ribbonData, totalLength = SetRibbonData(m, ribbon)
- for fac in factors:
- if (fac == 0):
- data = ribbonData[0]
- curFac = 0
- elif (fac == 1):
- data = ribbonData[-1]
- curFac = 0
- else:
- targetLength = totalLength * fac
- data = ribbonData[0]
- curLength = 0
- for ( (t, b), (tNext, bNext), length,) in ribbonData:
- if (curLength >= targetLength):
- break
- curLength += length
- data = ( (t, b), (tNext, bNext), length,)
- targetLengthAtEdge = (curLength - targetLength)
- if (targetLength == 0):
- curFac = 0
- elif (targetLength == totalLength):
- curFac = 1
- else:
- # NOTE: This can be Zero. That should throw an error.
- curFac = 1 - (targetLengthAtEdge/ data[2]) #length
- t1 = m.vertices[data[0][0]]; b1 = m.vertices[data[0][1]]
- t2 = m.vertices[data[1][0]]; b2 = m.vertices[data[1][1]]
- #location
- loc1 = (t1.co).lerp(b1.co, 0.5)
- loc2 = (t2.co).lerp(b2.co, 0.5)
- #width
- w1 = (t1.co - b1.co).length/2
- w2 = (t2.co - b2.co).length/2 #radius, not diameter
- #normal
- n1 = (t1.normal).slerp(b1.normal, 0.5)
- n2 = (t1.normal).slerp(b2.normal, 0.5)
- if ((data[0][0] > data[1][0]) and (ribbon[2] == False)):
- curFac = 0
- #don't interpolate if at the end of a ribbon that isn't circular
- if ( 0 < curFac < 1):
- outPoint = loc1.lerp(loc2, curFac)
- outNorm = n1.lerp(n2, curFac)
- outWidth = w1 + ( (w2-w1) * curFac)
- elif (curFac <= 0):
- outPoint = loc1.copy()
- outNorm = n1
- outWidth = w1
- elif (curFac >= 1):
- outPoint = loc2.copy()
- outNorm = n2
- outWidth = w2
- outPoint = mat @ outPoint
- outNorm.normalize()
- points.append ( outPoint.copy() ) #copy because this is an actual vertex location
- widths.append ( outWidth )
- normals.append( outNorm )
- ret.append( (points, widths, normals) )
- return ret # this is a list of tuples containing three lists
- #This bisection search is generic, and it searches based on the
- # magnitude of the error, rather than the sign.
- # If the sign of the error is meaningful, a simpler function
- # can be used.
- def do_bisect_search_by_magnitude(
- owner,
- attribute,
- index = None,
- test_function = None,
- modify = None,
- max_iterations = 10000,
- threshold = 0.0001,
- thresh2 = 0.0005,
- context = None,
- update_dg = None,
- ):
- from math import floor
- i = 0; best_so_far = 0; best = float('inf')
- min = 0; center = max_iterations//2; max = max_iterations
- # enforce getting the absolute value, in case the function has sign information
- # The sign may be useful in a sign-aware bisect search, but this one is more robust!
- test = lambda : abs(test_function(owner, attribute, index, context = context,))
- while (i <= max_iterations):
- upper = (max - ((max-center))//2)
- modify(owner, attribute, index, upper, context = context); error1 = test()
- lower = (center - ((center-min))//2)
- modify(owner, attribute, index, lower, context = context); error2 = test()
- if (error1 < error2):
- min = center
- center, check = upper, upper
- error = error1
- else:
- max = center
- center, check = lower, lower
- error = error2
- if (error <= threshold) or (min == max-1):
- break
- if (error < thresh2):
- j = min
- while (j < max):
- modify(owner, attribute, index, j * 1/max_iterations, context = context)
- error = test()
- if (error < best):
- best_so_far = j; best = error
- if (error <= threshold):
- break
- j+=1
- else: # loop has completed without finding a solution
- i = best_so_far; error = test()
- modify(owner, attribute, index, best_so_far, context = context)
- break
- if (error < best):
- best_so_far = check; best = error
- i+=1
- if update_dg:
- update_dg.update()
- else: # Loop has completed without finding a solution
- i = best_so_far
- modify(owner, attribute, best_so_far, context = context); i+=1
|