| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541 | from .node_container_common import *from .base_definitions import MantisNode, NodeSocketfrom .xForm_containers import xFormArmature, xFormBonefrom math import pi, taudef TellClasses():    return [             # utility             InputFloat,             InputIntNode,             InputVector,             InputBoolean,             InputBooleanThreeTuple,             InputRotationOrder,             InputTransformSpace,             InputString,             InputMatrix,             InputExistingGeometryObject,             InputExistingGeometryData,             UtilityGeometryOfXForm,             UtilityNameOfXForm,             UtilityPointFromCurve,             UtilityMatrixFromCurve,             UtilityMatricesFromCurve,             UtilityNumberOfCurveSegments,             UtilityMatrixFromCurveSegment,             UtilityMetaRig,             UtilityBoneProperties,             UtilityDriverVariable,             UtilityDriver,             UtilityFCurve,             UtilityKeyframe,             UtilitySwitch,             UtilityCombineThreeBool,             UtilityCombineVector,             UtilitySeparateVector,             UtilityCatStrings,             UtilityGetBoneLength,             UtilityPointFromBoneMatrix,             UtilitySetBoneLength,             UtilityMatrixSetLocation,             UtilityMatrixGetLocation,             UtilityMatrixFromXForm,             UtilityAxesFromMatrix,             UtilityBoneMatrixHeadTailFlip,             UtilityMatrixTransform,             UtilityTransformationMatrix,             UtilityIntToString,             UtilityArrayGet,             UtilitySetBoneMatrixTail,             # Control flow switches             UtilityCompare,             UtilityChoose,             # useful NoOp:             UtilityPrint,            ]def matrix_from_head_tail(head, tail, normal=None):    from mathutils import Vector, Quaternion, Matrix    if normal is None:        rotation = Vector((0,1,0)).rotation_difference((tail-head).normalized()).to_matrix()        m= Matrix.LocRotScale(head, rotation, None)        m[3][3] = (tail-head).length    else: # construct a basis matrix        m = Matrix.Identity(3)        axis = (tail-head).normalized()        conormal = axis.cross(normal)        m[0]=conormal        m[1]=axis        m[2]=normal        m = m.transposed().to_4x4()    return mdef cleanup_curve(curve_name : str, execution_id : str) -> None:        import bpy        curve = bpy.data.objects.get(curve_name)        m_name = curve.name+'.'+ execution_id        if (mesh := bpy.data.meshes.get(m_name)):            bpy.data.meshes.remove(mesh)#*#-------------------------------#++#-------------------------------#*## U T I L I T Y   N O D E S#*#-------------------------------#++#-------------------------------#*#class InputFloat(MantisNode):    '''A node representing float input'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = ["Float Input"]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = Trueclass InputIntNode(MantisNode):    '''A node representing integer input'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = ["Integer"]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = True    class InputVector(MantisNode):    '''A node representing vector input'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = [""]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = Trueclass InputBoolean(MantisNode):    '''A node representing boolean input'''        def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = [""]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = Trueclass InputBooleanThreeTuple(MantisNode):    '''A node representing a tuple of three booleans'''            def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = [""]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = True    class InputRotationOrder(MantisNode):    '''A node representing string input for rotation order'''            def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = [""]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = True    class InputTransformSpace(MantisNode):    '''A node representing string input for transform space'''            def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = [""]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters[""]    class InputString(MantisNode):    '''A node representing string input'''            def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = [""]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = True    class InputMatrix(MantisNode):    '''A node representing axis-angle quaternion input'''            def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs  = ["Matrix",]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = 'UTILITY'        self.prepared = True        self.executed = Trueclass UtilityMatrixFromCurve(MantisNode):    '''Get a matrix from a curve'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Curve"            ,          "Total Divisions"  ,          "Matrix Index"     ,        ]        outputs = [          "Matrix" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        from mathutils import Matrix        import bpy        m = Matrix.Identity(4)        curve = bpy.data.objects.get(self.evaluate_input("Curve"))        if not curve:            prRed(f"No curve found for {self}. Using an Identity matrix instead.")            m[3][3] = 1.0        else:            from .utilities import mesh_from_curve, data_from_ribbon_mesh            if not bContext:                # TODO find out if this is bad or a HACK or if it is OK                bContext = bpy.context            # IMPORTANT TODO: I need to be able to reuse this m            # First, try to get the one we made before            m_name = curve.name+'.'+self.base_tree.execution_id            if not (m := bpy.data.meshes.get(m_name)):                m = mesh_from_curve(curve, bContext)                m.name = m_name            #            num_divisions = self.evaluate_input("Total Divisions")            m_index = self.evaluate_input("Matrix Index")            factors = [1/num_divisions*m_index, 1/num_divisions*(m_index+1)]            data = data_from_ribbon_mesh(m, [factors], curve.matrix_world)            head=data[0][0][0]            tail= data[0][0][1]            axis = (tail-head).normalized()            normal=data[0][2][0]            # make sure the normal is perpendicular to the tail            from .utilities import make_perpendicular            normal = make_perpendicular(axis, normal)            m = matrix_from_head_tail(head, tail, normal)            # this is in world space... let's just convert it back            m.translation = head - curve.location            m[3][3]=(tail-head).length            # TODO HACK TODO            # all the nodes should work in world-space, and it should be the responsibility            # of the xForm node to convert!        self.parameters["Matrix"] = m        self.prepared = True        self.executed = True        def bFinalize(self, bContext=None):        cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)class UtilityPointFromCurve(MantisNode):    '''Get a point from a curve'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Curve"       ,          "Factor"      ,        ]        outputs = [          "Point" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        import bpy        curve = bpy.data.objects.get(self.evaluate_input("Curve"))        if not curve:            raise RuntimeError(f"No curve found for {self}.")        else:            from .utilities import mesh_from_curve, data_from_ribbon_mesh            if not bContext:                # TODO find out if this is bad or a HACK or if it is OK                bContext = bpy.context            # IMPORTANT TODO: I need to be able to reuse this m            # First, try to get the one we made before            m_name = curve.name+'.'+self.base_tree.execution_id            if not (m := bpy.data.meshes.get(m_name)):                m = mesh_from_curve(curve, bContext)                m.name = m_name            #            num_divisions = 1            factors = [self.evaluate_input("Factor")]            data = data_from_ribbon_mesh(m, [factors], curve.matrix_world)            p = data[0][0][0] - curve.location        self.parameters["Point"] = p        self.prepared, self.executed = True, True        def bFinalize(self, bContext=None):        cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)class UtilityMatricesFromCurve(MantisNode):    '''Get matrices from a curve'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Curve"            ,          "Total Divisions"  ,        ]        outputs = [          "Matrices" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        import time        # start_time = time.time()        #        from mathutils import Matrix        import bpy        m = Matrix.Identity(4)        curve_name = self.evaluate_input("Curve")        curve = bpy.data.objects.get(curve_name)        if not curve:            prRed(f"No curve found for {self}. Using an Identity matrix instead.")            m[3][3] = 1.0        else:            from .utilities import mesh_from_curve, data_from_ribbon_mesh            if not bContext:                bContext = bpy.context            m_name = curve.name+'.'+self.base_tree.execution_id            if not (mesh := bpy.data.meshes.get(m_name)):                mesh = mesh_from_curve(curve, bContext)                mesh.name = m_name            num_divisions = self.evaluate_input("Total Divisions")            factors = [0.0] + [(1/num_divisions*(i+1)) for i in range(num_divisions)]            data = data_from_ribbon_mesh(mesh, [factors], curve.matrix_world)                        # 0 is the spline index. 0 selects points as opposed to normals or whatever.            from .utilities import make_perpendicular            matrices = [matrix_from_head_tail(                data[0][0][i],                 data[0][0][i+1],                make_perpendicular((data[0][0][i+1]-data[0][0][i]).normalized(), data[0][2][i]),) \                    for i in range(num_divisions)]                for link in self.outputs["Matrices"].links:            for i, m in enumerate(matrices):                name = "Matrix"+str(i).zfill(4)                if not (out := self.outputs.get(name)): # reuse them if there are multiple links.                    out = self.outputs[name] = NodeSocket(name = name, node=self)                c = out.connect(link.to_node, link.to_socket)                # prOrange(c)                self.parameters[name] = m                # print (mesh)            link.die()        self.prepared = True        self.executed = True        # prGreen(f"Matrices from curves took {time.time() - start_time} seconds.")        def bFinalize(self, bContext=None):        import bpy        curve_name = self.evaluate_input("Curve")        curve = bpy.data.objects.get(curve_name)        m_name = curve.name+'.'+self.base_tree.execution_id        if (mesh := bpy.data.meshes.get(m_name)):            prGreen(f"Freeing mesh data {m_name}...")            bpy.data.meshes.remove(mesh)class UtilityNumberOfCurveSegments(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Curve"            ,          "Spline Index"     ,        ]        outputs = [          "Number of Segments" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        def bPrepare(self, bContext = None,):        import bpy        curve_name = self.evaluate_input("Curve")        curve = bpy.data.objects.get(curve_name)        spline = curve.data.splines[self.evaluate_input("Spline Index")]        if spline.type == "BEZIER":            self.parameters["Number of Segments"] = len(spline.bezier_points)-1        else:            self.parameters["Number of Segments"] = len(spline.points)-1        self.prepared = True        self.executed = Trueclass UtilityMatrixFromCurveSegment(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Curve"            ,          "Spline Index"     ,          "Segment Index"    ,        ]        outputs = [          "Matrix"           ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        from mathutils import Matrix        import bpy        curve = bpy.data.objects.get(self.evaluate_input("Curve"))        if not curve:            raise RuntimeError(f"No curve found for {self}.")        else:            from .utilities import mesh_from_curve, data_from_ribbon_mesh            if not bContext: bContext = bpy.context            m_name = curve.name+'.'+self.base_tree.execution_id            if not (m := bpy.data.meshes.get(m_name)):                m = mesh_from_curve(curve, bContext)                m.name = m_name            # this section is dumb, but it is because the data_from_ribbon_mesh            #  function is designed to pull data from many splines at once (for optimization)            #  so we have to give it empty splines for each one we skip.            # TODO: Refactor this to make it so I can select spline index            spline_index = self.evaluate_input("Spline Index")            spline = curve.data.splines[spline_index]            splines_factors = [ [] for i in range (spline_index)]            factors = [0.0]            points = spline.bezier_points if spline.type == 'BEZIER' else spline.points            total_length=0.0            for i in range(len(points)-1):                total_length+= (seg_length := (points[i+1].co - points[i].co).length)                factors.append(seg_length)            prev_length = 0.0            for i in range(len(factors)):                factors[i] = prev_length+factors[i]/total_length                prev_length=factors[i]                # Why does this happen? Floating point error?                if factors[i]>1.0: factors[i] = 1.0            splines_factors.append(factors)            #            data = data_from_ribbon_mesh(m, splines_factors, curve.matrix_world)            segment_index = self.evaluate_input("Segment Index")            head=data[spline_index][0][segment_index]            tail= data[spline_index][0][segment_index+1]            axis = (tail-head).normalized()            normal=data[spline_index][2][segment_index]            # make sure the normal is perpendicular to the tail            from .utilities import make_perpendicular            normal = make_perpendicular(axis, normal)            m = matrix_from_head_tail(head, tail, normal)            m.translation = head - curve.location            m[3][3]=(tail-head).length            self.parameters["Matrix"] = m        self.prepared, self.executed = True, True        def bFinalize(self, bContext=None):        cleanup_curve(self.evaluate_input("Curve"), self.base_tree.execution_id)class UtilityMetaRig(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Meta-Armature" ,          "Meta-Bone"     ,        ]        outputs = [          "Matrix" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        #kinda clumsy, whatever        import bpy        from mathutils import Matrix        m = Matrix.Identity(4)                meta_rig  = self.evaluate_input("Meta-Armature")        meta_bone = self.evaluate_input("Meta-Bone")                if meta_rig:            if ( armOb := bpy.data.objects.get(meta_rig) ):                m = armOb.matrix_world                if ( b := armOb.data.bones.get(meta_bone)):                    # calculate the correct object-space matrix                    m = Matrix.Identity(3)                    bones = [] # from the last ancestor, mult the matrices until we get to b                    while (b): bones.append(b); b = b.parent                    while (bones): b = bones.pop(); m = m @ b.matrix                    m = Matrix.Translation(b.head_local) @ m.to_4x4()                    #                    m[3][3] = b.length # this is where I arbitrarily decided to store length                # else:                #     prRed("no bone for MetaRig node ", self)        else:            raise RuntimeError(wrapRed(f"No meta-rig input for MetaRig node {self}"))                self.parameters["Matrix"] = m        self.prepared = True        self.executed = Trueclass UtilityBoneProperties(MantisNode):    '''A node representing a bone's gettable properties'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        outputs = [            "matrix"        ,            "matrix_local"  ,            "matrix_basis"  ,            "head"          ,            "tail"          ,            "length"        ,            "rotation"      ,            "location"      ,            "scale"         ,        ]        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        self.prepared = True        self.executed = True    def fill_parameters(self, prototype=None):        return        # TODO this should probably be moved to Linksclass UtilityDriverVariable(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [            "Variable Type"   ,            "Property"       ,            "Property Index" ,            "Evaluation Space",            "Rotation Mode"   ,            "xForm 1"         ,            "xForm 2"         ,        ]        outputs = [          "Driver Variable",        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "DRIVER" # MUST be run in Pose mode        self.prepared = True            def evaluate_input(self, input_name):        if input_name == 'Property':            if self.inputs.get('Property'):                if self.inputs['Property'].is_linked:                # get the name instead...                    trace = trace_single_line(self, input_name)                    return trace[1].name # the name of the socket            return self.parameters["Property"]        return super().evaluate_input(input_name)            def GetxForm(self, index=1):        trace = trace_single_line(self, "xForm 1" if index == 1 else "xForm 2")        for node in trace[0]:            if (node.__class__ in [xFormArmature, xFormBone]):                return node #this will fetch the first one, that's good!        return None    def bExecute(self, bContext = None,):        prepare_parameters(self)        #prPurple ("Executing Driver Variable Node")        xForm1 = self.GetxForm()        xForm2 = self.GetxForm(index=2)        # kinda clumsy        if xForm1 : xForm1 = xForm1.bGetObject()        if xForm2 : xForm2 = xForm2.bGetObject()                v_type = self.evaluate_input("Variable Type")        i = self.evaluate_input("Property Index"); dVarChannel = ""        if (i >= 0): #negative values will use the vector property.            if self.evaluate_input("Property") == 'location':                if   i == 0: dVarChannel = "LOC_X"                elif i == 1: dVarChannel = "LOC_Y"                elif i == 2: dVarChannel = "LOC_Z"                else: raise RuntimeError("Invalid property index for %s" % self)            if self.evaluate_input("Property") == 'rotation':                if   i == 0: dVarChannel = "ROT_X"                elif i == 1: dVarChannel = "ROT_Y"                elif i == 2: dVarChannel = "ROT_Z"                elif i == 3: dVarChannel = "ROT_W"                else: raise RuntimeError("Invalid property index for %s" % self)            if self.evaluate_input("Property") == 'scale':                if   i == 0: dVarChannel = "SCALE_X"                elif i == 1: dVarChannel = "SCALE_Y"                elif i == 2: dVarChannel = "SCALE_Z"                elif i == 3: dVarChannel = "SCALE_AVG"                else: raise RuntimeError("Invalid property index for %s" % self)            if self.evaluate_input("Property") == 'scale_average':                dVarChannel = "SCALE_AVG"        if dVarChannel: v_type = "TRANSFORMS"                my_var = {            "owner"         : xForm1, # will be filled in by Driver            "prop"          : self.evaluate_input("Property"), # will be filled in by Driver            "type"          : v_type,            "space"         : self.evaluate_input("Evaluation Space"),            "rotation_mode" : self.evaluate_input("Rotation Mode"),            "xForm 1"       : xForm1,#self.GetxForm(index = 1),            "xForm 2"       : xForm2,#self.GetxForm(index = 2),            "channel"       : dVarChannel,}                # Push parameter to downstream connected node.connected:        if (out := self.outputs["Driver Variable"]).is_linked:            self.parameters[out.name] = my_var            for link in out.links:                link.to_node.parameters[link.to_socket] = my_var        self.executed = True            class UtilityKeyframe(MantisNode):    '''A node representing a keyframe for a F-Curve'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Frame"   ,          "Value"   ,        ]        outputs = [          "Keyframe" ,        ]        additional_parameters = {"Keyframe":{}}        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters( additional_parameters=additional_parameters)        self.node_type = "DRIVER" # MUST be run in Pose mode        setup_custom_props(self)    def bPrepare(self, bContext = None,):        key = self.parameters["Keyframe"]        from mathutils import Vector        key["co"]= Vector( (self.evaluate_input("Frame"), self.evaluate_input("Value"),))        key["type"]="GENERATED"        key["interpolation"] = "LINEAR"        # eventually this will have the right data, TODO        # self.parameters["Keyframe"] = key        self.prepared = True        self.executed = Trueclass UtilityFCurve(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [            "Extrapolation Mode",        ]        outputs = [          "fCurve",        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        setup_custom_props(self)        self.prepared = True    def evaluate_input(self, input_name):        return super().evaluate_input(input_name)    def bExecute(self, bContext = None,):        prepare_parameters(self)        from .utilities import get_node_prototype        np = get_node_prototype(self.signature, self.base_tree)        extrap_mode = self.evaluate_input("Extrapolation Mode")        keys = [] # ugly but whatever        #['amplitude', 'back', 'bl_rna', 'co', 'co_ui', 'easing', 'handle_left', 'handle_left_type', 'handle_right', 'handle_right_type',        # 'interpolation', 'period', 'rna_type', 'select_control_point', 'select_left_handle', 'select_right_handle', 'type']        for k in self.inputs.keys():            if k == 'Extrapolation Mode' : continue            # print (self.inputs[k])            if (key := self.evaluate_input(k)) is None:                prOrange(f"WARN: No keyframe connected to {self}:{k}. Skipping Link.")            else:                keys.append(key)        if len(keys) <1:            prOrange(f"WARN: no keys in fCurve {self}.")        keys.append(extrap_mode)        self.parameters["fCurve"] = keys        self.executed = True#TODO make the fCurve data a data class instead of a dict class UtilityDriver(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Driver Type"   ,          "Expression"    ,          "fCurve"        ,        ]        outputs = [          "Driver",        ]        from .drivers import MantisDriver        additional_parameters = {          "Driver":MantisDriver(),         }        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters(additional_parameters=additional_parameters)        self.node_type = "DRIVER" # MUST be run in Pose mode        setup_custom_props(self)        self.prepared = True    def bExecute(self, bContext = None,):        prepare_parameters(self)        from .drivers import MantisDriver        #prPurple("Executing Driver Node")        my_vars = []        keys = self.evaluate_input("fCurve")        if keys is None or len(keys) <2:            prWhite(f"INFO: no fCurve connected to {self}; using default fCurve.")            from mathutils import Vector            keys = [                {"co":Vector( (0, 0,)), "type":"GENERATED", "interpolation":"LINEAR" },                {"co":Vector( (1, 1,)), "type":"GENERATED", "interpolation":"LINEAR" },                "CONSTANT",]        for inp in list(self.inputs.keys() )[3:]:            if (new_var := self.evaluate_input(inp)):                new_var["name"] = inp                my_vars.append(new_var)            else:                raise RuntimeError(f"Failed to initialize Driver variable for {self}")        my_driver ={ "owner"         :  None,                     "prop"          :  None, # will be filled out in the node that uses the driver                     "expression"    :  self.evaluate_input("Expression"),                     "ind"           :  -1, # same here                     "type"          :  self.evaluate_input("Driver Type"),                     "vars"          :  my_vars,                     "keys"          :  keys[:-1],                     "extrapolation" :  keys[-1] }                my_driver = MantisDriver(my_driver)                self.parameters["Driver"].update(my_driver)        print("Initializing driver %s " % (wrapPurple(self.__repr__())) )        self.executed = Trueclass UtilitySwitch(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = {          "Parameter"            ,          "Parameter Index"      ,          "Invert Switch"        ,        }        outputs = [          "Driver",        ]        from .drivers import MantisDriver        additional_parameters = {          "Driver":MantisDriver(),         }        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters(additional_parameters=additional_parameters)        self.node_type = "DRIVER" # MUST be run in Pose mode        self.prepared = True    def evaluate_input(self, input_name):        if input_name == 'Parameter':            if self.inputs['Parameter'].is_connected:                trace = trace_single_line(self, input_name)                return trace[1].name # the name of the socket            return self.parameters["Parameter"]        return super().evaluate_input(input_name)    def GetxForm(self,):        trace = trace_single_line(self, "Parameter" )        for node in trace[0]:            if (node.__class__ in [xFormArmature, xFormBone]):                return node #this will fetch the first one, that's good!        return None    def bExecute(self, bContext = None,):        #prepare_parameters(self)        #prPurple ("Executing Switch Node")        xForm = self.GetxForm()        if xForm : xForm = xForm.bGetObject()         if not xForm:            raise RuntimeError("Could not evaluate xForm for %s" % self)        from .drivers import MantisDriver        my_driver ={ "owner" : None,                     "prop"  : None, # will be filled out in the node that uses the driver                      "ind"   : -1, # same here                     "type"  : "SCRIPTED",                     "vars"  : [ { "owner" : xForm,                                   "prop"  : self.evaluate_input("Parameter"),                                   "name"  : "a",                                   "type"  : "SINGLE_PROP", } ],                     "keys"  : [ { "co":(0,0),                                   "interpolation": "LINEAR",                                   "type":"KEYFRAME",}, #display type                                 { "co":(1,1),                                   "interpolation": "LINEAR",                                   "type":"KEYFRAME",},],                      "extrapolation": 'CONSTANT', }        my_driver   ["expression"] = "a"                my_driver = MantisDriver(my_driver)    # this makes it so I can check for type later!                if self.evaluate_input("Invert Switch") == True:            my_driver   ["expression"] = "1 - a"                # this way, regardless of what order things are handled, the        #  driver is sent to the next node.        # In the case of some drivers, the parameter may be sent out        #  before it's filled in (because there is a circular dependency)        # I want to support this behaviour because Blender supports it.        # We do not make a copy. We update the driver, so that        #  the same instance is filled out.        self.parameters["Driver"].update(my_driver)        print("Initializing driver %s " % (wrapPurple(self.__repr__())) )        self.executed = Trueclass UtilityCombineThreeBool(MantisNode):    '''A node for combining three booleans into a boolean three-tuple'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "X"   ,          "Y"   ,          "Z"   ,        ]        outputs = [          "Three-Bool",        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        self.parameters["Three-Bool"] = (          self.evaluate_input("X"),          self.evaluate_input("Y"),          self.evaluate_input("Z"), )        self.prepared = True        self.executed = True# Note this is a copy of the above. This needs to be de-duplicated.class UtilityCombineVector(MantisNode):    '''A node for combining three floats into a vector'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        super().__init__(signature, base_tree)        inputs = [          "X"   ,          "Y"   ,          "Z"   ,        ]        outputs = [          "Vector",        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        #prPurple("Executing CombineVector Node")        prepare_parameters(self)        self.parameters["Vector"] = (          self.evaluate_input("X"),          self.evaluate_input("Y"),          self.evaluate_input("Z"), )        self.prepared = True        self.executed = True  class UtilitySeparateVector(MantisNode):    '''A node for separating a vector into three floats'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Vector"        ]        outputs = [          "X"   ,          "Y"   ,          "Z"   ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        self.parameters["X"] = self.evaluate_input("Vector")[0]        self.parameters["Y"] = self.evaluate_input("Vector")[1]        self.parameters["Z"] = self.evaluate_input("Vector")[2]        self.prepared = True        self.executed = Trueclass UtilityCatStrings(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "String_1"   ,          "String_2"   ,        ]        outputs = [          "OutputString" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        def bPrepare(self, bContext = None,):        self.parameters["OutputString"] = self.evaluate_input("String_1")+self.evaluate_input("String_2")        self.prepared = True        self.executed = Trueclass InputExistingGeometryObject(MantisNode):    '''A node representing an existing object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Name"  ,        ]        outputs = [          "Object" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "XFORM"        def bPrepare(self, bContext=None):        from bpy import data        name = self.evaluate_input("Name")        if name:          self.bObject = data.objects.get( name  )        else:          self.bObject = None        if self is None and (name := self.evaluate_input("Name")):          prRed(f"No object found with name {name} in {self}")        self.prepared = True; self.executed = True    def bGetObject(self, mode=''):        return self.bObjectclass InputExistingGeometryData(MantisNode):    '''A node representing existing object data'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Name"  ,        ]        outputs = [          "Geometry" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        self.prepared = True        self.executed = True    # the mode argument is only for interface consistency    def bGetObject(self, mode=''):        from bpy import data        # first try Curve, then try Mesh        bObject = data.curves.get(self.evaluate_input("Name"))        if not bObject:            bObject = data.meshes.get(self.evaluate_input("Name"))        if bObject is None:            raise RuntimeError(f"Could not find a mesh or curve datablock named \"{self.evaluate_input('Name')}\" for node {self}")        return bObjectclass UtilityGeometryOfXForm(MantisNode):    '''A node representing existing object data'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "xForm"  ,        ]        outputs = [          "Geometry" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        self.prepared = True        self.executed = True    # mode for interface consistency    def bGetObject(self, mode=''):        if not (self.inputs.get('xForm') and self.inputs['xForm'].links):            prOrange(f"WARN: Cannot retrieve data from {self}, there is no xForm node connected.")            return None        xf = self.inputs["xForm"].links[0].from_node        if xf.node_type == 'XFORM':            xf_ob = xf.bGetObject()            if xf_ob.type in ['MESH', 'CURVE']:                return xf_ob.data        prOrange(f"WARN: Cannot retrieve data from {self}, the connected xForm is not a mesh or curve.")        return Noneclass UtilityNameOfXForm(MantisNode):    '''A node representing existing object data'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "xForm"  ,        ]        outputs = [          "Name" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    # mode for interface consistency    def bPrepare(self, bContext = None,):        if not (self.inputs.get('xForm') and self.inputs['xForm'].links):            prOrange(f"WARN: Cannot retrieve data from {self}, there is no xForm node connected.")            return ''        xf = self.inputs["xForm"].links[0].from_node        self.parameters["Name"] = xf.evaluate_input('Name')        self.prepared, self.executed = True, Trueclass UtilityGetBoneLength(MantisNode):    '''A node to get the length of a bone matrix'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Bone Matrix" ,        ]        outputs = [          "Bone Length" ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        if l := self.evaluate_input("Bone Matrix"):            self.parameters["Bone Length"] = l[3][3]        self.prepared = True        self.executed = Trueclass UtilityPointFromBoneMatrix(MantisNode):    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Bone Matrix"   ,          "Head/Tail"     ,        ]        outputs = [          "Point"     ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    # TODO: find out why this is sometimes not ready at bPrepare phase    def bPrepare(self, bContext = None,):        from mathutils import Vector        matrix = self.evaluate_input("Bone Matrix")        head, rotation, _scale = matrix.copy().decompose()        tail = head.copy() + (rotation @ Vector((0,1,0)))*matrix[3][3]        self.parameters["Point"] = head.lerp(tail, self.evaluate_input("Head/Tail"))        self.prepared = True        self.executed = Trueclass UtilitySetBoneLength(MantisNode):    '''Sets the length of a Bone's matrix'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Bone Matrix"   ,          "Length"        ,        ]        outputs = [          "Bone Matrix"   ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.evaluate_input("Bone Matrix"):            matrix = matrix.copy()            # print (self.inputs["Length"].links)            matrix[3][3] = self.evaluate_input("Length")            self.parameters["Length"] = self.evaluate_input("Length")            self.parameters["Bone Matrix"] = matrix        self.prepared = True        self.executed = True  class UtilityMatrixSetLocation(MantisNode):    '''Sets the location of a matrix'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Matrix"        ,          "Location"      ,        ]        outputs = [          "Matrix"        ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.evaluate_input("Matrix"):            matrix = matrix.copy()            # print (self.inputs["Length"].links)            loc = self.evaluate_input("Location")            matrix[0][3] = loc[0]; matrix[1][3] = loc[1]; matrix[2][3] = loc[2]            self.parameters["Matrix"] = matrix        self.prepared = True        self.executed = Trueclass UtilityMatrixGetLocation(MantisNode):    '''Gets the location of a matrix'''    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Matrix"        ,        ]        outputs = [          "Location"    ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"        def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.evaluate_input("Matrix"):            self.parameters["Location"] = matrix.to_translation()        self.prepared = True; self.executed = Trueclass UtilityMatrixFromXForm(MantisNode):    """Returns the matrix of the given xForm node."""    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "xForm"        ,        ]        outputs = [          "Matrix"       ,        ]        self.node_type = "UTILITY"        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        def GetxForm(self):        trace = trace_single_line(self, "xForm")        for node in trace[0]:            if (node.node_type == 'XFORM'):                return node        raise GraphError("%s is not connected to an xForm" % self)            def bPrepare(self, bContext = None,):        from mathutils import Vector, Matrix        self.parameters["Matrix"] = Matrix.Identity(4)        if matrix := self.GetxForm().parameters.get("Matrix"):            self.parameters["Matrix"] = matrix.copy()        elif hasattr(self.GetxForm().bObject, "matrix"):            self.parameters["Matrix"] = self.GetxForm().bObject.matrix.copy()        elif hasattr(self.GetxForm().bObject, "matrix_world"):            self.parameters["Matrix"] = self.GetxForm().bObject.matrix_world.copy()        else:          prRed(f"Could not find matrix for {self} - check if the referenced object exists.")        self.prepared = True; self.executed = Trueclass UtilityAxesFromMatrix(MantisNode):    """Returns the axes of the given matrix."""    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Matrix"       ,        ]        outputs = [          "X Axis"      ,          "Y Axis"      ,          "Z Axis"      ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"            def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.evaluate_input("Matrix"):            matrix= matrix.copy().to_3x3()            self.parameters['X Axis'] = matrix @ Vector((1,0,0))            self.parameters['Y Axis'] = matrix @ Vector((0,1,0))            self.parameters['Z Axis'] = matrix @ Vector((0,0,1))        self.prepared = True; self.executed = Trueclass UtilityBoneMatrixHeadTailFlip(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Bone Matrix"     ,        ]        outputs = [          "Bone Matrix"     ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        from mathutils import Vector, Matrix, Quaternion        from bpy.types import Bone        if matrix := self.evaluate_input("Bone Matrix"):            axis, roll = Bone.AxisRollFromMatrix(matrix.to_3x3())            new_mat = Bone.MatrixFromAxisRoll(-1*axis, roll)            length = matrix[3][3]            new_mat.resize_4x4()         # last column contains            new_mat[0][3] = matrix[0][3] + axis[0]*length # x location            new_mat[1][3] = matrix[1][3] + axis[1]*length # y location            new_mat[2][3] = matrix[2][3] + axis[2]*length # z location            new_mat[3][3] = length                           # length            self.parameters["Bone Matrix"] = new_mat        self.prepared, self.executed = True, Trueclass UtilityMatrixTransform(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Matrix 1"   ,          "Matrix 2"   ,        ]        outputs = [          "Out Matrix"    ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        from mathutils import Vector        mat1 = self.evaluate_input("Matrix 1"); mat2 = self.evaluate_input("Matrix 2")        if mat1 and mat2:            mat1copy = mat1.copy()            self.parameters["Out Matrix"] = mat2 @ mat1copy            self.parameters["Out Matrix"].translation = mat1copy.to_translation()+ mat2.to_translation()        else:            raise RuntimeError(wrapRed(f"Node {self} did not receive all matrix inputs... found input 1? {mat1 is not None}, 2? {mat2 is not None}"))        self.prepared = True        self.executed = Trueclass UtilityTransformationMatrix(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Operation"   ,          "Vector"      ,          "W"           ,        ]        outputs = [          "Matrix"    ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        from mathutils import Matrix, Vector        if (operation := self.evaluate_input("Operation")) == 'ROTATE_AXIS_ANGLE':            # this can, will, and should fail if the axis is 0,0,0            self.parameters["Matrix"] = rotMat = Matrix.Rotation(self.evaluate_input("W"), 4, Vector(self.evaluate_input("Vector")).normalized())        elif (operation := self.evaluate_input("Operation")) == 'TRANSLATE':            m = Matrix.Identity(4)            if axis := self.evaluate_input("Vector"):                m[0][3]=axis[0];m[1][3]=axis[1];m[2][3]=axis[2]            self.parameters['Matrix'] = m        elif (operation := self.evaluate_input("Operation")) == 'SCALE':            self.parameters["Matrix"] = Matrix.Scale(self.evaluate_input("W"), 4, Vector(self.evaluate_input("Vector")).normalized())        else:            raise NotImplementedError(self.evaluate_input("Operation").__repr__()+ "  Operation not yet implemented.")        self.prepared = True        self.executed = Trueclass UtilityIntToString(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Number"         ,          "Zero Padding"   ,        ]        outputs = [          "String"         ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        number = self.evaluate_input("Number")        zeroes = self.evaluate_input("Zero Padding")        # I'm casting to int because I want to support any number, even though the node asks for int.        self.parameters["String"] = str(int(number)).zfill(int(zeroes))        self.prepared = True        self.executed = Trueclass UtilityArrayGet(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Index"           ,          "OoB Behaviour"   ,          "Array"           ,        ]        outputs = [          "Output"          ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):      if self.prepared == False:        # sort the array entries        for inp in self.inputs.values():            inp.links.sort(key=lambda a : -a.multi_input_sort_id)        oob   = self.evaluate_input("OoB Behaviour")        index = self.evaluate_input("Index")        from .utilities import cap, wrap                # we must assume that the array has sent the correct number of links        if oob == 'WRAP':            index = index % len(self.inputs['Array'].links)        if oob == 'HOLD':            index = cap(index, len(self.inputs['Array'].links)-1)        # relink the connections and then kill all the links to and from the array        from .utilities import init_connections, init_dependencies        l = self.inputs["Array"].links[index]        for link in self.outputs["Output"].links:            to_node = link.to_node            l.from_node.outputs[l.from_socket].connect(to_node, link.to_socket)            link.die()            init_dependencies(to_node)        from_node=l.from_node        for inp in self.inputs.values():            for l in inp.links:              l.die()        init_connections(from_node)        if self in from_node.hierarchy_connections:          raise RuntimeError()        # this is intentional because the Array Get is kind of a weird hybrid between a Utility and a Schema        # so it should be removed from the tree when it is done. it has already dealt with the actual links.        # however I think this is redundant. Check.        self.hierarchy_connections, self.connections = [], []        self.hierarchy_dependencies, self.dependencies = [], []        self.prepared = True        self.executed = Trueclass UtilitySetBoneMatrixTail(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = {          "Matrix"        ,          "Tail Location" ,        }        outputs = [          "Result"       ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):      from mathutils import Matrix      matrix = self.evaluate_input("Matrix")      if matrix is None: matrix = Matrix.Identity(4)      #just do this for now lol      self.parameters["Result"] = matrix_from_head_tail(matrix.translation, self.evaluate_input("Tail Location"))      self.prepared = True      self.executed = Trueclass UtilityPrint(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Input"         ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        if my_input := self.evaluate_input("Input"):            print("Preparation phase: ", wrapWhite(self), wrapGreen(my_input))        # else:        #     prRed("No input to print.")        self.prepared = True    def bExecute(self, bContext = None,):        if my_input := self.evaluate_input("Input"):            print("Execution phase: ", wrapWhite(self), wrapGreen(my_input))        # else:        #     prRed("No input to print.")        self.executed = Trueclass UtilityCompare(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "A"           ,          "B"           ,        ]        outputs = [          "Result"      ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        self.parameters["Result"] = self.evaluate_input("A") == self.evaluate_input("B")        self.prepared = True; self.executed = Trueclass UtilityChoose(MantisNode):    def __init__(self, signature, base_tree):        super().__init__(signature, base_tree)        inputs = [          "Condition"   ,          "A"           ,          "B"           ,        ]        outputs = [          "Result"      ,        ]        self.inputs.init_sockets(inputs)        self.outputs.init_sockets(outputs)        self.init_parameters()        self.node_type = "UTILITY"    def bPrepare(self, bContext = None,):        condition = self.evaluate_input("Condition")        if condition:            self.parameters["Result"] = self.evaluate_input("B")        else:            self.parameters["Result"] = self.evaluate_input("A")        self.prepared = True        self.executed = True
 |