| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191 | 
#fool: should be wrColor like prColor... dumbdef wrapRed(skk):    return "\033[91m{}\033[00m".format(skk)def wrapGreen(skk):  return "\033[92m{}\033[00m".format(skk)def wrapPurple(skk): return "\033[95m{}\033[00m".format(skk)def wrapWhite(skk):  return "\033[97m{}\033[00m".format(skk)def wrapOrange(skk):  return "\033[0;33m{}\033[00m".format(skk)# these should reimplement the print interface..def prRed(*args): print (*[wrapRed(arg) for arg in args])def prGreen(*args): print (*[wrapGreen(arg) for arg in args])def prPurple(*args): print (*[wrapPurple(arg) for arg in args])def prWhite(*args): print (*[wrapWhite(arg) for arg in args])def prOrange(*args): print (*[wrapOrange(arg) for arg in args])# add THIS to the top of a file for easy access:# from mantis.utilities import (prRed, prGreen, prPurple, prWhite,#                               prOrange,#                               wrapRed, wrapGreen, wrapPurple, wrapWhite,#                               wrapOrange,)#  SOME PRINTS#DO! Figure out what the hell this does# then re-write it in a simpler, cleaner way# that ignores groups because it gets lines from a parsed tree# ideally I can use the seeking-lines instead of the socket/tree lines# since those allow the function to travel through the tree.# not sure if the above comment still has any place here....def print_lines(lines):     printstring, string = "", ""    cur_g = 0    for line in lines:        string += wrapRed("%i: " % len(line))        for s, g in line:            new_g = len(g) -1            difference = new_g - cur_g            if difference > 0:                string = string[:-1] # get rid of leading space                for i in range(difference):                    string += " [ "            elif difference < 0:                string = string[:-4]# get rid of arrow                for i in range(abs(difference)):                    string += " ] "                string += "-> "            cur_g = new_g            wrap=wrapWhite            if (s.node.bl_idname in ['UtilitySwitch', 'UtilityDriver', 'UtilityDriverVariable']):                wrap = wrapPurple            elif (s.node.bl_idname in ['xFormArmatureNode', 'xFormBoneNode']):                wrap = wrapOrange            elif (s.node.bl_idname in ['LinkStretchTo']):                wrap = wrapRed            elif ('Link' in s.node.bl_idname):                wrap = wrapGreen            string += wrap(s.node.name + ":" + s.name) + " -> "        string = string[:-4]        while cur_g > 0:            cur_g -= 1            string += " ] "        cur_g, difference = 0,0        printstring +=string + "\n\n"; string = ""    return printstring    # why is this not printing groups in brackets?def print_socket_signature(sig):    string = ""    for i, e in enumerate(sig):        if (e == "NONE"):            continue        wrap = wrapWhite        if (i == len(sig)-2):            wrap = wrapRed        elif (i == len(sig) - 1):            wrap = wrapGreen        string+= wrap(e) + ":"    return string[:-1]    def print_node_signature(sig,):    string = ""    for i, e in enumerate(sig):        if (e == "NONE"):            continue        wrap = wrapWhite        if (i == len(sig)-2):            wrap = wrapRed        elif (i == len(sig) - 1):            continue        string+= wrap(e) + ":"    return string[:-1]def print_parsed_node(parsed_node):    # do: make this consistent with the above    string = ""    for k, v in parsed_node.items():        if isinstance(v, dict):            string += "%s:\n" % (k)            for k1, v1 in v.items():                string += "    %s:                %s\n" % (k1, v1)        else:            string += "%s:    %s\n" % (k, v )    return string## SIGNATURES ##def get_socket_signature(line_element):    """    This function creates a convenient, hashable signature for    identifying a node path.    """    if not line_element:        return None    signature, socket, tree_path = [], line_element[0], line_element[1]    for n in tree_path:        if hasattr(n, "name"):            signature.append(n.name)        else:            signature.append("NONE")    signature.append(socket.node.name); signature.append(socket.identifier)    return tuple(signature)def tuple_of_line(line):    # For creating a set of lines    return tuple(tuple_of_line_element(e) for e in line)def tuple_of_line_element(line_element):    return (line_element[0], tuple(line_element[1]))# A fuction for getting to the end of a Reroute.def socket_seek(start_link, links):    link = start_link    while(link.from_socket):        for newlink in links:            if link.from_socket.node.inputs:                if newlink.to_socket == link.from_socket.node.inputs[0]:                    link=newlink; break        else:            break    return link.from_socket# this creates fake links that have the same interface as Blender's# so that I can bypass Reroutesdef clear_reroutes(links):    from .node_container_common import DummyLink    kept_links, rerouted_starts = [], []    rerouted = []    all_links = links.copy()    while(all_links):        link = all_links.pop()        to_cls = link.to_socket.node.bl_idname        from_cls = link.from_socket.node.bl_idname        reroute_classes = ["NodeReroute"]        if (to_cls in reroute_classes and            from_cls in reroute_classes):                rerouted.append(link)        elif (to_cls in reroute_classes and not            from_cls in reroute_classes):                rerouted.append(link)        elif (from_cls in reroute_classes and not            to_cls in reroute_classes):                rerouted_starts.append(link)        else:            kept_links.append(link)    for start in rerouted_starts:        from_socket = socket_seek(start, rerouted)        new_link = DummyLink(from_socket=from_socket, to_socket=start.to_socket, nc_from=None, nc_to=None)        kept_links.append(new_link)    return kept_linksdef tree_from_nc(sig, base_tree):    if (sig[0] == 'MANTIS_AUTOGENERATED'):        sig = sig[:-2] # cut off the end part of the signature. (Why am I doing this??) # because it uses socket.name and socket.identifier        # this will lead to totally untraceble bugs in the event of a change in how signatures are assigned    tree = base_tree    for i, path_item in enumerate(sig):        if (i == 0) or (i == len(sig) - 1):            continue        tree = tree.nodes.get(path_item).node_tree    return tree    def get_node_prototype(sig, base_tree):    return tree_from_nc(sig, base_tree).nodes.get( sig[-1] )################################################################################################### groups and changing sockets -- this is used extensively by Schema.##################################################################################################def get_socket_maps(node):    maps = [{}, {}]    node_collection = ["inputs", "outputs"]    links = ["from_socket", "to_socket"]    for collection, map, link in zip(node_collection, maps, links):        for sock in getattr(node, collection):            if sock.is_linked:                map[sock.identifier]=[ getattr(l, link) for l in sock.links ]            else:                map[sock.identifier]=sock.get("default_value")    return mapsdef do_relink(node, s, map, in_out='INPUT', parent_name = ''):    tree = node.id_data; interface_in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT'    if hasattr(node, "node_tree"):        tree = node.node_tree        interface_in_out=in_out    from bpy.types import NodeSocket    get_string = '__extend__'    if s: get_string = s.identifier    if val := map.get(get_string):        if isinstance(val, list):            for sub_val in val:                # this will only happen once because it assigns s, so it is safe to do in the for loop.                if s is None:                    # prGreen("zornpt")                    name = unique_socket_name(node, sub_val, tree)                    sock_type = sub_val.bl_idname                    if parent_name:                        interface_socket = update_interface(tree.interface, name, interface_in_out, sock_type, parent_name)                    if in_out =='INPUT':                        s = node.inputs.new(sock_type, name, identifier=interface_socket.identifier)                    else:                        s = node.outputs.new(sock_type, name, identifier=interface_socket.identifier)                    if parent_name == 'Array': s.display_shape='SQUARE_DOT'                    # then move it up and delete the other link.                    # this also needs to modify the interface of the node tree.                                                        #                if isinstance(sub_val, NodeSocket):                    if in_out =='INPUT':                        node.id_data.links.new(input=sub_val, output=s)                    else:                        node.id_data.links.new(input=s, output=sub_val)        else:            try:                s.default_value = val            except (AttributeError, ValueError): # must be readonly or maybe it doesn't have a d.v.                passdef update_interface(interface, name, in_out, sock_type, parent_name):    if parent_name:        if not (interface_parent := interface.items_tree.get(parent_name)):            interface_parent = interface.new_panel(name=parent_name)        socket = interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)        if parent_name == 'Connection':            in_out = 'OUTPUT' if in_out == 'INPUT' else 'INPUT' # flip this make sure connections always do both            interface.new_socket(name=name,in_out=in_out, socket_type=sock_type, parent=interface_parent)        return socket    else:        raise RuntimeError(wrapRed("Cannot add interface item to tree without specifying type."))def relink_socket_map(node, node_collection, map, item, in_out=None):    from bpy.types import NodeSocket    if not in_out: in_out=item.in_out    if node.bl_idname in ['MantisSchemaGroup'] and item.parent and item.parent.name == 'Array':        multi = False        if in_out == 'INPUT':            multi=True        s = node_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier,  use_multi_input=multi)        # s.link_limit = node.schema_length TODO    else:        s = node_collection.new(type=item.socket_type, name=item.name, identifier=item.identifier)    if item.parent.name == 'Array': s.display_shape = 'SQUARE_DOT'    do_relink(node, s, map)def unique_socket_name(node, other_socket, tree):    name_stem = other_socket.bl_label; num=0    # if hasattr(other_socket, "default_value"):    #     name_stem = type(other_socket.default_value).__name__    for item in tree.interface.items_tree:        if item.item_type == 'PANEL': continue        if other_socket.is_output and item.in_out == 'INPUT': continue        if not other_socket.is_output and item.in_out == 'OUTPUT': continue        if name_stem in item.name: num+=1    name = name_stem + '.' + str(num).zfill(3)    return name###############################  READ TREE and also Schema Solve!##############################def init_connections(nc):    c, hc = [], []    for i in nc.outputs.values():        for l in i.links:            # if l.from_node != nc:            #     continue            if l.is_hierarchy:                hc.append(l.to_node)            c.append(l.to_node)    nc.hierarchy_connections = hc    nc.connections = cdef init_dependencies(nc):    c, hc = [], []    for i in nc.inputs.values():        for l in i.links:            # if l.to_node != nc:            #     continue            if l.is_hierarchy:                hc.append(l.from_node)            c.append(l.from_node)    nc.hierarchy_dependencies = hc    nc.dependencies = c# schema_input_types = [#         'SchemaIndex',#         'SchemaArrayInput',#         'SchemaArrayInputGet',#         'SchemaConstInput',#         'SchemaIncomingConnection',# ]# schema_output_types = [#         'SchemaArrayOutput',#         'SchemaConstOutput',#         'SchemaOutgoingConnection',# ]from .base_definitions import from_name_filter, to_name_filterdef init_schema_dependencies(schema, all_nc):    schema_name = schema.signature[-1]    all_input_nodes = []    all_output_nodes = []    # all_inernal_nodes = []    # for nc in all_nc.values():    #     for t in schema_input_types:    #         if nc.signature == (*schema.signature, t):    #             all_input_nodes.append(nc)    #     for t in schema_output_types:    #         if nc.signature == (*schema.signature, t):    #             all_output_nodes.append(nc)    # prOrange (schema.connections)    # print (schema.hierarchy_connections)    # prOrange (schema.dependencies)    # prOrange (schema.hierarchy_dependencies)    # so the challenge is to map these and check both ends    from .base_definitions import from_name_filter, to_name_filter    # go through the interface items then of course    from .utilities import get_node_prototype    np = get_node_prototype(schema.signature, schema.base_tree)    tree = np.node_tree    schema.dependencies = []    schema.hierarchy_dependencies = []    for item in tree.interface.items_tree:        if item.item_type == 'PANEL':            continue        hierarchy = True        hierarchy_reason=""        if item.in_out == 'INPUT':            c = schema.dependencies            hc = schema.hierarchy_dependencies            if item.parent and item.parent.name == 'Array':                for t in ['SchemaArrayInput', 'SchemaArrayInputGet']:                    if (nc := all_nc.get( (*schema.signature, t) )):                        for to_link in nc.outputs[item.name].links:                            if to_link.to_socket in to_name_filter:                                # hierarchy_reason='a'                                hierarchy = False                        for from_link in schema.inputs[item.identifier].links:                            if from_link.from_socket in from_name_filter:                                hierarchy = False                                # hierarchy_reason='b'                        if from_link.from_node not in c:                            if hierarchy:                                hc.append(from_link.from_node)                            c.append(from_link.from_node)            if item.parent and item.parent.name == 'Constant':                if nc := all_nc.get((*schema.signature, 'SchemaConstInput')):                    for to_link in nc.outputs[item.name].links:                        if to_link.to_socket in to_name_filter:                            # hierarchy_reason='c'                            hierarchy = False                    for from_link in schema.inputs[item.identifier].links:                        if from_link.from_socket in from_name_filter:                            # hierarchy_reason='d'                            hierarchy = False                    if from_link.from_node not in c:                        if hierarchy:                            hc.append(from_link.from_node)                        c.append(from_link.from_node)            if item.parent and item.parent.name == 'Connection':                if nc := all_nc.get((*schema.signature, 'SchemaIncomingConnection')):                    for to_link in nc.outputs[item.name].links:                        if to_link.to_socket in to_name_filter:                            # hierarchy_reason='e'                            hierarchy = False                    for from_link in schema.inputs[item.identifier].links:                        if from_link.from_socket in from_name_filter:                            # hierarchy_reason='f'                            hierarchy = False                    if from_link.from_node not in c:                        if hierarchy:                            hc.append(from_link.from_node)                        c.append(from_link.from_node)        # prPurple(item.in_out)        # if hierarchy:        #     prOrange(item.name)        # else:        #     prWhite(item.name)        #     print(hierarchy_reason)        # else:        #     c = schema.connections        #     hc = schema.hierarchy_connections        #     if item.parent and item.parent.name == 'Array':        #         if nc := all_nc.get((*schema.signature, 'SchemaArrayOutput')):        #             for from_link in nc.inputs[item.name].links:        #                 if from_link.from_socket in from_name_filter:        #                     hierarchy = False        #             for to_link in schema.outputs[item.identifier].links:        #                 if to_link.to_socket in to_name_filter:        #                     hierarchy = False        #     if item.parent and item.parent.name == 'Constant':        #         if nc := all_nc.get((*schema.signature, 'SchemaConstOutput')):        #             for from_link in nc.inputs[item.name].links:        #                 if from_link.from_socket in from_name_filter:        #                     hierarchy = False        #             for to_link in schema.outputs[item.identifier].links:        #                 if to_link.to_socket in to_name_filter:        #                     hierarchy = False        #     if item.parent and item.parent.name == 'Connection':        #         if nc := all_nc.get((*schema.signature, 'SchemaOutgoingConnection')):        #             for from_link in nc.inputs[item.name].links:        #                 if from_link.from_socket in from_name_filter:        #                     hierarchy = False        #             for to_link in schema.outputs[item.identifier].links:        #                 if to_link.to_socket in to_name_filter:        #                     hierarchy = False    # for nc in all_input_nodes:    #     for output in nc.outputs.values():    #         for l in output.links:    #             if l.to_socket in to_name_filter:    #                 print("not hierarchy", l.to_socket)    #             else:    #                 print("hierarchy", l.to_socket)    # for inp in schema.inputs.values():    #     for l in inp.links:    #         if l.from_socket in from_name_filter:    #             print("not hierarchy", l.from_socket)    #         else:    #             print("hierarchy", l.from_socket)        # we need to get dependencies and connections    # but we can use the same method to do each    # prPurple (schema.connections)    # # print (schema.hierarchy_connections)    # prPurple (schema.dependencies)    # prPurple (schema.hierarchy_dependencies)    # #def check_and_add_root(n, roots, include_non_hierarchy=False):    # if not (hasattr(n, 'inputs')) or ( len(n.inputs) == 0):    #     roots.append(n)    # elif (hasattr(n, 'inputs')):    #     for inp in n.inputs.values():    #         if inp.is_linked: return    if include_non_hierarchy == True and len(n.dependencies) > 0:        return     elif len(n.hierarchy_dependencies) > 0:        return    roots.append(n)def get_link_in_out(link):    from .base_definitions import replace_types    from_name, to_name = link.from_socket.node.name, link.to_socket.node.name    # catch special bl_idnames and bunch the connections up    if link.from_socket.node.bl_idname in replace_types:        from_name = link.from_socket.node.bl_idname     if link.to_socket.node.bl_idname in replace_types:        to_name = link.to_socket.node.bl_idname    return from_name, to_namedef link_node_containers(tree_path_names, link, local_nc, from_suffix='', to_suffix=''):    dummy_types = ["DUMMY", "DUMMY_SCHEMA"]    from_name, to_name = get_link_in_out(link)    nc_from = local_nc.get( (*tree_path_names, from_name+from_suffix) )    nc_to = local_nc.get( (*tree_path_names, to_name+to_suffix))    if (nc_from and nc_to):        from_s, to_s = link.from_socket.name, link.to_socket.name        if nc_to.node_type in dummy_types: to_s = link.to_socket.identifier        if nc_from.node_type in dummy_types: from_s = link.from_socket.identifier        try:            connection = nc_from.outputs[from_s].connect(node=nc_to, socket=to_s)            if connection is None:                prWhite(f"Already connected: {from_name}:{from_s}->{to_name}:{to_s}")            return connection        except KeyError as e:            prRed(f"{nc_from}:{from_s} or {nc_to}:{to_s} missing; review the connections printed below:")            print (nc_from.outputs.keys())            print (nc_to.inputs.keys())            raise e    else:        prRed(nc_from, nc_to, (*tree_path_names, from_name+from_suffix), (*tree_path_names, to_name+to_suffix))        # for nc in local_nc.values():        #     prOrange(nc)        raise RuntimeError(wrapRed("Link not connected: %s -> %s in tree %s" % (from_name, to_name, tree_path_names[-1])))    def get_all_dependencies(nc):    """ Given a NC, find all dependencies for the NC as a dict of nc.signature:nc"""    nodes = []    can_descend = True    check_nodes = [nc]    while (len(check_nodes) > 0): # this seems innefficient, why 2 loops?        new_nodes = []        while (len(check_nodes) > 0):            node = check_nodes.pop()            connected_nodes = node.hierarchy_dependencies.copy()            for new_node in connected_nodes:                if new_node in nodes: continue                 new_nodes.append(new_node)                nodes.append(new_node)        check_nodes = new_nodes    return nodes            ################################################################################################### misc################################################################################################### this function is used a lot, so it is a good target for optimization.def to_mathutils_value(socket):    if hasattr(socket, "default_value"):        from mathutils import Matrix, Euler, Quaternion, Vector        val = socket.default_value        # if socket.bl_idname in [        #     'NodeSocketVector',        #     'NodeSocketVectorAcceleration',        #     'NodeSocketVectorDirection',        #     'NodeSocketVectorTranslation',        #     'NodeSocketVectorXYZ',        #     'NodeSocketVectorVelocity',        #     'VectorSocket',        #     'VectorEulerSocket',        #     'VectorTranslationSocket',        #     'VectorScaleSocket',        #     'ParameterVectorSocket',]:        # # if "Vector" in socket.bl_idname:        #     return (Vector(( val[0], val[1], val[2], )))        # if socket.bl_idname in ['NodeSocketVectorEuler']:        #     return (Euler(( val[0], val[1], val[2])), 'XYZ',) #TODO make choice        if socket.bl_idname in ['MatrixSocket']:            return socket.TellValue()        # elif socket.bl_idname in ['QuaternionSocket']:        #     return (Quaternion( (val[0], val[1], val[2], val[3],)) )        # elif socket.bl_idname in ['QuaternionSocketAA']:        #     return (Quaternion( (val[1], val[2], val[3],), val[0], ) )        # elif socket.bl_idname in ['BooleanThreeTupleSocket']:        #     return (val[0], val[1], val[2])         else:            return val    else:        return Nonedef all_trees_in_tree(base_tree, selected=False):    """ Recursively finds all trees referenced in a given base-tree."""    # note that this is recursive but not by tail-end recursion    # a while-loop is a better way to do recursion in Python.    trees = [base_tree]    can_descend = True    check_trees = [base_tree]    while (len(check_trees) > 0): # this seems innefficient, why 2 loops?        new_trees = []        while (len(check_trees) > 0):            tree = check_trees.pop()            for node in tree.nodes:                if selected == True and node.select == False:                    continue                if new_tree := getattr(node, "node_tree", None):                    if new_tree in trees: continue                     new_trees.append(new_tree)                    trees.append(new_tree)        check_trees = new_trees    return trees# this is a destructive operation, not a pure function or whatever. That isn't good but I don't care.def SugiyamaGraph(tree, iterations):        from grandalf.graphs import Vertex, Edge, Graph, graph_core        class defaultview(object):            w,h = 1,1            xz = (0,0)                no_links = set()        verts = {}        for n in tree.nodes:            has_links=False            for inp in n.inputs:                if inp.is_linked:                    has_links=True                    break            else:                no_links.add(n.name)            for out in n.outputs:                if out.is_linked:                    has_links=True                    break            else:                try:                    no_links.remove(n.name)                except KeyError:                    pass            if not has_links:                continue                            v = Vertex(n.name)            v.view = defaultview()            v.view.xy = n.location            v.view.h = n.height*2.5            v.view.w = n.width*2.2            verts[n.name] = v                    edges = []        for link in tree.links:            weight = 1 # maybe this is useful            edges.append(Edge(verts[link.from_node.name], verts[link.to_node.name], weight) )        graph = Graph(verts.values(), edges)        from grandalf.layouts import SugiyamaLayout        sug = SugiyamaLayout(graph.C[0]) # no idea what .C[0] is        roots=[]        for node in tree.nodes:                        has_links=False            for inp in node.inputs:                if inp.is_linked:                    has_links=True                    break            for out in node.outputs:                if out.is_linked:                    has_links=True                    break            if not has_links:                continue                            if len(node.inputs)==0:                roots.append(verts[node.name])            else:                for inp in node.inputs:                    if inp.is_linked==True:                        break                else:                    roots.append(verts[node.name])                sug.init_all(roots=roots,)        sug.draw(iterations)        for v in graph.C[0].sV:            for n in tree.nodes:                if n.name == v.data:                    n.location.x = v.view.xy[1]                    n.location.y = v.view.xy[0]                # now we can take all the input nodes and try to put them in a sensible place        for n_name in no_links:            n = tree.nodes.get(n_name)            next_n = None            next_node = None            for output in n.outputs:                if output.is_linked == True:                    next_node = output.links[0].to_node                    break            # let's see if the next node            if next_node:                # need to find the other node in the same layer...                other_node = None                for s_input in next_node.inputs:                    if s_input.is_linked:                        other_node = s_input.links[0].from_node                        if other_node is n:                            continue                        else:                            break                if other_node:                    n.location = other_node.location                    n.location.y -= other_node.height*2                else: # we'll just position it next to the next node                    n.location = next_node.location                    n.location.x -= next_node.width*1.5        ################################################################################################### stuff I should probably refactor!!################################################################################################### what in the cuss is this horrible abomination??def class_for_mantis_prototype_node(prototype_node):    """ This is a class which returns a class to instantiate for        the given prototype node."""    #from .node_container_classes import TellClasses    from . import xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers    classes = {}    for module in [xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers]:        for cls in module.TellClasses():            classes[cls.__name__] = cls    # I could probably do a string.replace() here    # But I actually think this is a bad idea since I might not    #  want to use this name convention in the future    #  this is easy enough for now, may refactor.    #    # kek, turns out it was completely friggin' inconsistent already    if prototype_node.bl_idname == 'xFormRootNode':        return classes["xFormRoot"]    elif prototype_node.bl_idname == 'xFormArmatureNode':        return classes["xFormArmature"]    elif prototype_node.bl_idname == 'xFormBoneNode':        return classes["xFormBone"]    elif prototype_node.bl_idname == 'xFormGeometryObject':        return classes["xFormGeometryObject"]    elif prototype_node.bl_idname == 'linkInherit':        return classes["LinkInherit"]    elif prototype_node.bl_idname == 'InputFloatNode':        return classes["InputFloat"]    elif prototype_node.bl_idname == 'InputVectorNode':        return classes["InputVector"]    elif prototype_node.bl_idname == 'InputBooleanNode':        return classes["InputBoolean"]    elif prototype_node.bl_idname == 'InputBooleanThreeTupleNode':        return classes["InputBooleanThreeTuple"]    elif prototype_node.bl_idname == 'InputRotationOrderNode':        return classes["InputRotationOrder"]    elif prototype_node.bl_idname == 'InputTransformSpaceNode':        return classes["InputTransformSpace"]    elif prototype_node.bl_idname == 'InputStringNode':        return classes["InputString"]    elif prototype_node.bl_idname == 'InputQuaternionNode':        return classes["InputQuaternion"]    elif prototype_node.bl_idname == 'InputQuaternionNodeAA':        return classes["InputQuaternionAA"]    elif prototype_node.bl_idname == 'InputMatrixNode':        return classes["InputMatrix"]    elif prototype_node.bl_idname == 'MetaRigMatrixNode':        return classes["InputMatrix"]    elif prototype_node.bl_idname == 'InputLayerMaskNode':        return classes["InputLayerMask"]    elif prototype_node.bl_idname == 'GeometryCirclePrimitive':        return classes["CirclePrimitive"]            # every node before this point is not guarenteed to follow the pattern    # but every node not checked above does follow the pattern.        try:        return classes[ prototype_node.bl_idname ]    except KeyError:        # prGreen(prototype_node.bl_idname)        # prWhite(classes.keys())        pass        if prototype_node.bl_idname in [                                     "NodeReroute",                                    "NodeGroupInput",                                    "NodeGroupOutput",                                    "MantisNodeGroup",                                    "NodeFrame",                                    "MantisSchemaGroup",                                   ]:           return None        prRed(prototype_node.bl_idname)    raise RuntimeError(wrapOrange("Failed to create node container for: ")+wrapRed("%s" % prototype_node.bl_idname))    return None# This is really, really stupid HACKdef gen_nc_input_for_data(socket):    # Class List #TODO deduplicate    from . import xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers    classes = {}    for module in [xForm_containers, link_containers, misc_containers, primitives_containers, deformer_containers, math_containers, schema_containers]:        for cls in module.TellClasses():            classes[cls.__name__] = cls    #    socket_class_map = {                        "MatrixSocket"                         : classes["InputMatrix"],                        "xFormSocket"                          : None,                        "RelationshipSocket"                   : classes["xFormRoot"], # world in                        "DeformerSocket"                       : classes["xFormRoot"], # world in                        "GeometrySocket"                       : classes["InputExistingGeometryData"],                        "EnableSocket"                         : classes["InputBoolean"],                        "HideSocket"                           : classes["InputBoolean"],                        #                        "DriverSocket"                         : None,                        "DriverVariableSocket"                 : None,                         "FCurveSocket"                         : None,                         "KeyframeSocket"                       : None,                        # "LayerMaskInputSocket"               : classes["InputLayerMask"],                        # "LayerMaskSocket"                    : classes["InputLayerMask"],                        "BoneCollectionSocket"                 : classes["InputString"],                        "BoneCollectionInputSocket"            : classes["InputString"],                        #                        "xFormParameterSocket"                 : None,                        "ParameterBoolSocket"                  : classes["InputBoolean"],                        "ParameterIntSocket"                   : classes["InputFloat"],  #TODO: make an Int node for this                        "ParameterFloatSocket"                 : classes["InputFloat"],                        "ParameterVectorSocket"                : classes["InputVector"],                        "ParameterStringSocket"                : classes["InputString"],                        #                        "TransformSpaceSocket"                 : classes["InputTransformSpace"],                        "BooleanSocket"                        : classes["InputBoolean"],                        "BooleanThreeTupleSocket"              : classes["InputBooleanThreeTuple"],                        "RotationOrderSocket"                  : classes["InputRotationOrder"],                        "QuaternionSocket"                     : classes["InputQuaternion"],                        "QuaternionSocketAA"                   : classes["InputQuaternionAA"],                        "IntSocket"                            : classes["InputFloat"],                        "StringSocket"                         : classes["InputString"],                        #                        "BoolUpdateParentNode"                 : classes["InputBoolean"],                        "IKChainLengthSocket"                  : classes["InputFloat"],                        "EnumInheritScale"                     : classes["InputString"],                        "EnumRotationMix"                      : classes["InputString"],                        "EnumRotationMixCopyTransforms"        : classes["InputString"],                        "EnumMaintainVolumeStretchTo"          : classes["InputString"],                        "EnumRotationStretchTo"                : classes["InputString"],                        "EnumTrackAxis"                        : classes["InputString"],                        "EnumUpAxis"                           : classes["InputString"],                        "EnumLockAxis"                         : classes["InputString"],                        "EnumLimitMode"                        : classes["InputString"],                        "EnumYScaleMode"                       : classes["InputString"],                        "EnumXZScaleMode"                      : classes["InputString"],                        "EnumCurveSocket"                      : classes["InputString"],                        # Deformers                        "EnumSkinning"                         : classes["InputString"],                        #                        "FloatSocket"                          : classes["InputFloat"],                        "FloatFactorSocket"                    : classes["InputFloat"],                        "FloatPositiveSocket"                  : classes["InputFloat"],                        "FloatAngleSocket"                     : classes["InputFloat"],                        "VectorSocket"                         : classes["InputVector"],                        "VectorEulerSocket"                    : classes["InputVector"],                        "VectorTranslationSocket"              : classes["InputVector"],                        "VectorScaleSocket"                    : classes["InputVector"],                        # Drivers                                     "EnumDriverVariableType"               : classes["InputString"],                        "EnumDriverVariableEvaluationSpace"    : classes["InputString"],                        "EnumDriverRotationMode"               : classes["InputString"],                        "EnumDriverType"                       : classes["InputString"],                        "EnumKeyframeInterpolationTypeSocket"  : classes["InputString"],                        "EnumKeyframeBezierHandleTypeSocket"   : classes["InputString"],                        # Math                        "MathFloatOperation"                   : classes["InputString"],                        "MathVectorOperation"                  : classes["InputString"],                        "MatrixTransformOperation"             : classes["InputString"],                        # Schema                        "WildcardSocket"                       : None,                       }    return socket_class_map.get(socket.bl_idname, None)##################################### CURVE STUFF####################################def rotate(l, n):    if ( not ( isinstance(n, int) ) ): #print an error if n is not an int:        raise TypeError("List slice must be an int, not float.")    return l[n:] + l[:n]#from stack exchange, thanks YXD# this stuff could be branchless but I don't use it much TODOdef cap(val, maxValue):    if (val > maxValue):        return maxValue    return valdef capMin(val, minValue):    if (val < minValue):        return minValue    return val# def wrap(val, min=0, max=1):#     raise NotImplementedError#wtf this doesn't do anything even remotely similar to wrap, or useful in# HACK BAD FIXME UNBREAK ME BAD# I don't understand what this function does but I am using it in multiple places?def wrap(val, maxValue, minValue = None):    if (val > maxValue):        return (-1 * ((maxValue - val) + 1))    if ((minValue) and (val < minValue)):        return (val + maxValue)    return val    #TODO clean this updef layerMaskCompare(mask_a, mask_b):    compare = 0    for a, b in zip(mask_a, mask_b):        if (a != b):            compare+=1    if (compare == 0):        return True    return Falsedef lerpVal(a, b, fac = 0.5):    return a + ( (b-a) * fac)def RibbonMeshEdgeLengths(m, ribbon):    tE = ribbon[0]; bE = ribbon[1]; c = ribbon[2]    lengths = []    for i in range( len( tE ) ): #tE and bE are same length        if (c == True):            v1NextInd = tE[wrap((i+1), len(tE) - 1)]        else:            v1NextInd = tE[cap((i+1) , len(tE) - 1 )]        v1 = m.vertices[tE[i]]; v1Next = m.vertices[v1NextInd]        if (c == True):            v2NextInd = bE[wrap((i+1), len(bE) - 1)]        else:            v2NextInd = bE[cap((i+1) , len(bE) - 1 )]        v2 = m.vertices[bE[i]]; v2Next = m.vertices[v2NextInd]                v = v1.co.lerp(v2.co, 0.5); vNext = v1Next.co.lerp(v2Next.co, 0.5)        # get the center, edges may not be straight so total length         #  of one edge may be more than the ribbon center's length        lengths.append(( v - vNext ).length)    return lengthsdef EnsureCurveIsRibbon(crv, defaultRadius = 0.1):    crvRadius = 0    if (crv.data.bevel_depth == 0):        crvRadius = crv.data.extrude    else: #Set ribbon from bevel depth        crvRadius = crv.data.bevel_depth        crv.data.bevel_depth = 0        crv.data.extrude = crvRadius    if (crvRadius == 0):        crv.data.extrude = defaultRadiusdef SetRibbonData(m, ribbon):    #maybe this could be incorporated into the DetectWireEdges function?    #maybe I can check for closed poly curves here? under what other circumstance    # will I find the ends of the wire have identical coordinates?    ribbonData = []    tE = ribbon[0].copy(); bE = ribbon[1].copy()# circle = ribbon[2]    #    lengths = RibbonMeshEdgeLengths(m, ribbon)    lengths.append(0)    totalLength = sum(lengths)    # m.calc_normals() #calculate normals    # it appears this has been removed.    for i, (t, b) in enumerate(zip(tE, bE)):        ind = wrap( (i + 1), len(tE) - 1 )        tNext = tE[ind]; bNext = bE[ind]        ribbonData.append(  ( (t,b), (tNext, bNext), lengths[i] ) )        #if this is a circle, the last v in vertData has a length, otherwise 0    return ribbonData, totalLengthdef mesh_from_curve(crv, context,):    """Utility function for converting a mesh to a curve       which will return the correct mesh even with modifiers"""    import bpy    if (len(crv.modifiers) > 0):        do_unlink = False        if (not context.scene.collection.all_objects.get(crv.name)):            context.collection.objects.link(crv) # i guess this forces the dg to update it?            do_unlink = True        dg = context.view_layer.depsgraph        # just gonna modify it for now lol        EnsureCurveIsRibbon(crv)        # try:        dg.update()        mOb = crv.evaluated_get(dg)        m = bpy.data.meshes.new_from_object(mOb)        m.name=crv.data.name+'_mesh'        if (do_unlink):            context.collection.objects.unlink(crv)        return m        # except: #dg is None?? # FIX THIS BUG BUG BUG        #     print ("Warning: could not apply modifiers on curve")        #     return bpy.data.meshes.new_from_object(crv)    else: # (ಥ﹏ಥ) why can't I just use this !        # for now I will just do it like this        EnsureCurveIsRibbon(crv)        return bpy.data.meshes.new_from_object(crv)# def DataFromRibbon(obCrv, factorsList, context, fReport=None,):#     # BUG#     # no reasonable results if input is not  a ribbon#     import time#     start = time.time()#     """Returns a point from a u-value along a curve"""#     rM = MeshFromCurve(obCrv, context)#     ribbons = f_mesh.DetectRibbons(rM, fReport= fReport)#     for ribbon in ribbons:#         # could be improved, this will do a rotation for every ribbon#         # if even one is a circle#         if (ribbon[2]) == True:#             # could be a better implementation#             dupeCrv = obCrv.copy()#             dupeCrv.data = obCrv.data.copy()#             dupeCrv.data.extrude = 0#             dupeCrv.data.bevel_depth = 0 #             wM = MeshFromCurve(dupeCrv, context)#             wires = f_mesh.DetectWireEdges(wM)#             bpy.data.curves.remove(dupeCrv.data) #removes the object, too#             ribbonsNew = []#             for ribbon, wire in zip(ribbons, wires):#                 if (ribbon[2] == True): #if it's a circle#                     rNew = f_mesh.RotateRibbonToMatchWire(ribbon, rM, wire, wM)#                 else:#                     rNew = ribbon#                 ribbonsNew.append( rNew )#             ribbons = ribbonsNew#             break#     data = f_mesh.DataFromRibbon(rM, factorsList, obCrv.matrix_world, ribbons=ribbons, fReport=fReport)#     bpy.data.meshes.remove(rM)#     print ("time elapsed: ", time.time() - start)#     #expects data...#     # if ()#     return datadef DetectRibbon(f, bm, skipMe):    fFirst = f.index    cont = True    circle = False    tEdge, bEdge = [],[]    while (cont == True):        skipMe.add(f.index)        tEdge.append (f.loops[0].vert.index) # top-left        bEdge.append (f.loops[3].vert.index) # bottom-left        nEdge = bm.edges.get([f.loops[1].vert, f.loops[2].vert])        nFaces = nEdge.link_faces        if (len(nFaces) == 1):             cont = False        else:            for nFace in nFaces:                if (nFace != f):                    f = nFace                    break            if (f.index == fFirst):                cont = False                circle = True        if (cont == False): # we've reached the end, get the last two:            tEdge.append (f.loops[1].vert.index) # top-right            bEdge.append (f.loops[2].vert.index) # bottom-right            # this will create a loop for rings --             #  "the first shall be the last and the last shall be first"    return (tEdge,bEdge,circle)def DetectRibbons(m, fReport = None):    # Returns list of vertex indices belonging to ribbon mesh edges    # NOTE: this assumes a mesh object with only ribbon meshes    # ---DO NOT call this script with a mesh that isn't a ribbon!--- #    import bmesh    bm = bmesh.new()    bm.from_mesh(m)    mIslands, mIsland = [], []    skipMe = set()    bm.faces.ensure_lookup_table()    #first, get a list of mesh islands    for f in bm.faces:        if (f.index in skipMe):            continue #already done here        checkMe = [f]        while (len(checkMe) > 0):            facesFound = 0            for f in checkMe:                if (f.index in skipMe):                    continue #already done here                mIsland.append(f)                skipMe.add(f.index)                for e in f.edges:                    checkMe += e.link_faces            if (facesFound == 0):                #this is the last iteration                mIslands.append(mIsland)                checkMe, mIsland = [], []    ribbons = []    skipMe = set() # to store ends already checked    for mIsl in mIslands:        ribbon = None        first = float('inf')        for f in mIsl:            if (f.index in skipMe):                continue #already done here            if (f.index < first):                first = f.index            adjF = 0            for e in f.edges:                adjF+= (len(e.link_faces) - 1)                # every face other than this one is added to the list            if (adjF == 1):                ribbon = (DetectRibbon(f, bm, skipMe) )                break        if (ribbon == None):            ribbon = (DetectRibbon(bm.faces[first], bm, skipMe) )        ribbons.append(ribbon)    # print (ribbons)    return ribbonsdef data_from_ribbon_mesh(m, factorsList, mat, ribbons = None, fReport = None):    #Note, factors list should be equal in length the the number of wires    #Now working for multiple wires, ugly tho    if (ribbons == None):        ribbons = DetectRibbons(m, fReport=fReport)        if (ribbons is None):            if (fReport):                fReport(type = {'ERROR'}, message="No ribbon to get data from.")            else:                  print ("No ribbon to get data from.")            return None    ret = []    for factors, ribbon in zip(factorsList, ribbons):        points  = []        widths  = []        normals = []        ribbonData, totalLength = SetRibbonData(m, ribbon)        for fac in factors:            if (fac == 0):                data = ribbonData[0]                curFac = 0            elif (fac == 1):                data = ribbonData[-1]                curFac = 0            else:                targetLength = totalLength * fac                data = ribbonData[0]                curLength = 0                for ( (t, b), (tNext, bNext), length,) in ribbonData:                    if (curLength >= targetLength):                        break                    curLength += length                    data = ( (t, b), (tNext, bNext), length,)                targetLengthAtEdge = (curLength - targetLength)                if (targetLength == 0):                    curFac = 0                elif (targetLength == totalLength):                    curFac = 1                else:                    try:                        curFac = 1 - (targetLengthAtEdge/ data[2]) #length                    except ZeroDivisionError:                        curFac = 0                        if (fReport):                            fReport(type = {'WARNING'}, message="Division by Zero.")                        else:                              prRed ("Division by Zero Error in evaluating data from curve.")            t1 = m.vertices[data[0][0]]; b1 = m.vertices[data[0][1]]            t2 = m.vertices[data[1][0]]; b2 = m.vertices[data[1][1]]            #location            loc1 = (t1.co).lerp(b1.co, 0.5)            loc2 = (t2.co).lerp(b2.co, 0.5)            #width            w1 = (t1.co - b1.co).length/2            w2 = (t2.co - b2.co).length/2 #radius, not diameter            #normal            n1 = (t1.normal).slerp(b1.normal, 0.5)            n2 = (t1.normal).slerp(b2.normal, 0.5)            if ((data[0][0] > data[1][0]) and (ribbon[2] == False)):                curFac = 0                #don't interpolate if at the end of a ribbon that isn't circular            if ( 0 < curFac < 1):                outPoint = loc1.lerp(loc2, curFac)                outNorm  = n1.lerp(n2, curFac)                outWidth = w1 + ( (w2-w1) * curFac)            elif (curFac <= 0):                outPoint = loc1.copy()                outNorm = n1                outWidth = w1            elif (curFac >= 1):                outPoint = loc2.copy()                outNorm = n2                outWidth = w2            outPoint = mat @ outPoint            outNorm.normalize()            points.append ( outPoint.copy() ) #copy because this is an actual vertex location            widths.append ( outWidth )            normals.append( outNorm )        ret.append( (points, widths, normals) )    return ret # this is a list of tuples containing three lists
 |