| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711 | from .node_container_common import *# The fact that I need this means that some of these classes should#  probably be moved to link_containers.pyfrom .xForm_containers import xFormRoot, xFormArmature, xFormBonefrom math import pi, taudef TellClasses():    return [             # utility             InputFloat,             InputIntNode,             InputVector,             InputBoolean,             InputBooleanThreeTuple,             InputRotationOrder,             InputTransformSpace,             InputString,             InputQuaternion,             InputQuaternionAA,             InputMatrix,            #  InputLayerMask,             # InputGeometry,             InputExistingGeometryObject,             InputExistingGeometryData,             UtilityMatrixFromCurve,             UtilityMatricesFromCurve,             UtilityMetaRig,             UtilityBoneProperties,             UtilityDriverVariable,             UtilityDriver,             UtilityFCurve,             UtilityKeyframe,             UtilitySwitch,             UtilityCombineThreeBool,             UtilityCombineVector,             UtilityCatStrings,             UtilityGetBoneLength,             UtilityPointFromBoneMatrix,             UtilitySetBoneLength,             UtilityMatrixSetLocation,             UtilityMatrixGetLocation,             UtilityMatrixFromXForm,             UtilityAxesFromMatrix,             UtilityBoneMatrixHeadTailFlip,             UtilityMatrixTransform,             UtilityTransformationMatrix,             UtilityIntToString,             UtilityArrayGet,             #             UtilityCompare,             UtilityChoose,             #             UtilityPrint,            ]def matrix_from_head_tail(head, tail):    from mathutils import Vector, Quaternion, Matrix    rotation = Vector((0,1,0)).rotation_difference((tail-head).normalized()).to_matrix()    m= Matrix.LocRotScale(head, rotation, None)    m[3][3] = (tail-head).length    return m#*#-------------------------------#++#-------------------------------#*## G E N E R I C   N O D E S#*#-------------------------------#++#-------------------------------#*## in reality, none of these inputs have names#  so I am using the socket name for now#  I suppose I could use any name :3# TODO: the inputs that do not have names should have an empty string#   TODO after that: make this work with identifiers instead, stupid.class InputFloat:    '''A node representing float input'''        def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"Float Input" : NodeSocket(name = "Float Input", node=self) }        self.parameters = {"Float Input":None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["Float Input"]class InputIntNode:    '''A node representing integer input'''        def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"Integer" : NodeSocket(name = "Integer", node=self) }        self.parameters = {"Integer":None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["Integer"]    class InputVector:    '''A node representing vector input'''        def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"VectorSocket" : NodeSocket(name = 'VectorSocket', node=self) }        self.parameters = {'VectorSocket':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["VectorSocket"]    class InputBoolean:    '''A node representing boolean input'''        def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"BooleanSocket" : NodeSocket(name = 'BooleanSocket', node=self) }        self.parameters = {'BooleanSocket':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["BooleanSocket"]class InputBooleanThreeTuple:    '''A node representing inheritance'''            def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"BooleanThreeTupleSocket" : NodeSocket(name = 'BooleanThreeTupleSocket', node=self) }        self.parameters = {'BooleanThreeTupleSocket':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["BooleanThreeTupleSocket"]    class InputRotationOrder:    '''A node representing string input for rotation order'''            def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"RotationOrderSocket" : NodeSocket(name = 'RotationOrderSocket', node=self) }        self.parameters = {'RotationOrderSocket':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["RotationOrderSocket"]    class InputTransformSpace:    '''A node representing string input for transform space'''            def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"TransformSpaceSocket" : NodeSocket(name = 'TransformSpaceSocket', node=self) }        self.parameters = {'TransformSpaceSocket':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["TransformSpaceSocket"]    class InputString:    '''A node representing string input'''            def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"" : NodeSocket(name = '', node=self) }        self.parameters = {'':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters[""]    class InputQuaternion:    '''A node representing quaternion input'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs = {"QuaternionSocket" : NodeSocket(name = 'QuaternionSocket', node=self) }        self.parameters = {'QuaternionSocket':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True                    def evaluate_input(self, input_name):        return self.parameters["QuaternionSocket"]    class InputQuaternionAA:    '''A node representing axis-angle quaternion input'''            def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs  = {"QuaternionSocketAA" : NodeSocket(name = 'QuaternionSocketAA', node=self) }        self.parameters = {'QuaternionSocketAA':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["QuaternionSocketAA"]    class InputMatrix:    '''A node representing axis-angle quaternion input'''            def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {}        self.outputs  = {"Matrix" : NodeSocket(name = 'Matrix', node=self) }        self.parameters = {'Matrix':None, "Mute":None}        self.node_type = 'UTILITY'        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True            def evaluate_input(self, input_name):        return self.parameters["Matrix"]        def fill_parameters(self):        # this node is peculiar for how its data is input        # It uses node properties that are not addressable as sockets.        from mathutils import Matrix        from .utilities import get_node_prototype        node_prototype = get_node_prototype(self.signature, self.base_tree)                matrix = ( node_prototype.first_row[ 0], node_prototype.first_row[ 1], node_prototype.first_row[ 2], node_prototype.first_row[ 3],                   node_prototype.second_row[0], node_prototype.second_row[1], node_prototype.second_row[2], node_prototype.second_row[3],                   node_prototype.third_row[ 0], node_prototype.third_row[ 1], node_prototype.third_row[ 2], node_prototype.third_row[ 3],                   node_prototype.fourth_row[0], node_prototype.fourth_row[1], node_prototype.fourth_row[2], node_prototype.fourth_row[3], )        self.parameters["Matrix"] = Matrix([matrix[0:4], matrix[4:8], matrix[8:12], matrix[12:16]])        # print (self.parameters["Matrix"])class UtilityMatrixFromCurve:    '''Get a matrix from a curve'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Curve"            : NodeSocket(is_input = True, name = "Curve", node=self),          "Total Divisions"  : NodeSocket(is_input = True, name = "Total Divisions", node=self),          "Matrix Index"     : NodeSocket(is_input = True, name = "Matrix Index", node=self),        }        self.outputs = {          "Matrix" : NodeSocket(name = "Matrix", node=self),        }        self.parameters = {          "Curve"            : None,          "Total Divisions"  : None,          "Matrix Index"     : None,          "Matrix"           : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        from mathutils import Matrix        import bpy        m = Matrix.Identity(4)        curve = bpy.data.objects.get(self.evaluate_input("Curve"))        if not curve:            prRed(f"No curve found for {self}. Using an Identity matrix instead.")            m[3][3] = 1.0        else:            from .utilities import mesh_from_curve, data_from_ribbon_mesh            if not bContext:                # TODO find out if this is bad or a HACK or if it is OK                bContext = bpy.context            # IMPORTANT TODO: I need to be able to reuse this m            # First, try to get the one we made before            m_name = curve.name+'.'+self.base_tree.execution_id            if not (m := bpy.data.meshes.get(m_name)):                m = mesh_from_curve(curve, bContext)                m.name = m_name            #            num_divisions = self.evaluate_input("Total Divisions")            m_index = self.evaluate_input("Matrix Index")            factors = [1/num_divisions*m_index, 1/num_divisions*(m_index+1)]            data = data_from_ribbon_mesh(m, [factors], curve.matrix_world)            # print(data)                        m = matrix_from_head_tail(data[0][0][0], data[0][0][1])        self.parameters["Matrix"] = m        self.prepared = True        self.executed = True        def bFinalize(self, bContext=None):        import bpy        curve_name = self.evaluate_input("Curve")        curve = bpy.data.objects.get(curve_name)        m_name = curve.name+'.'+self.base_tree.execution_id        if (mesh := bpy.data.meshes.get(m_name)):            bpy.data.meshes.remove(mesh)    def fill_parameters(self):        fill_parameters(self)class UtilityMatricesFromCurve:    '''Get matrices from a curve'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Curve"            : NodeSocket(is_input = True, name = "Curve", node=self),          "Total Divisions"  : NodeSocket(is_input = True, name = "Total Divisions", node=self),        #   "Matrix Index"     : NodeSocket(is_input = True, name = "Matrix Index", node=self),        }        self.outputs = {          "Matrices" : NodeSocket(name = "Matrices", node=self),        }        self.parameters = {          "Curve"            : None,          "Total Divisions"  : None,        #   "Matrix Index"     : None,          "Matrices"           : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        import time        # start_time = time.time()        #        from mathutils import Matrix        import bpy        m = Matrix.Identity(4)        curve_name = self.evaluate_input("Curve")        curve = bpy.data.objects.get(curve_name)        if not curve:            prRed(f"No curve found for {self}. Using an Identity matrix instead.")            m[3][3] = 1.0        else:            from .utilities import mesh_from_curve, data_from_ribbon_mesh            if not bContext:                bContext = bpy.context            m_name = curve.name+'.'+self.base_tree.execution_id            if not (mesh := bpy.data.meshes.get(m_name)):                mesh = mesh_from_curve(curve, bContext)                mesh.name = m_name            num_divisions = self.evaluate_input("Total Divisions")            factors = [0.0] + [(1/num_divisions*(i+1)) for i in range(num_divisions)]            data = data_from_ribbon_mesh(mesh, [factors], curve.matrix_world)                        # 0 is the spline index. 0 selects points as opposed to normals or whatever.            matrices = [matrix_from_head_tail(data[0][0][i], data[0][0][i+1]) for i in range(num_divisions)]                for link in self.outputs["Matrices"].links:            for i, m in enumerate(matrices):                name = "Matrix"+str(i).zfill(4)                if not (out := self.outputs.get(name)): # reuse them if there are multiple links.                    out = self.outputs[name] = NodeSocket(name = name, node=self)                c = out.connect(link.to_node, link.to_socket)                # prOrange(c)                self.parameters[name] = m                # print (mesh)            link.die()        self.prepared = True        self.executed = True        # prGreen(f"Matrices from curves took {time.time() - start_time} seconds.")        def bFinalize(self, bContext=None):        import bpy        curve_name = self.evaluate_input("Curve")        curve = bpy.data.objects.get(curve_name)        m_name = curve.name+'.'+self.base_tree.execution_id        if (mesh := bpy.data.meshes.get(m_name)):            prGreen(f"Freeing mesh data {m_name}...")            bpy.data.meshes.remove(mesh)    def fill_parameters(self):        fill_parameters(self)class UtilityMetaRig:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Meta-Armature" : NodeSocket(is_input = True, name = "Meta-Armature", node=self),          "Meta-Bone"     : NodeSocket(is_input = True, name = "Meta-Bone", node=self),        }        self.outputs = {          "Matrix" : NodeSocket(name = "Matrix", node=self),        }        self.parameters = {          "Meta-Armature" : None,          "Meta-Bone" : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        #kinda clumsy, whatever        import bpy        from mathutils import Matrix        m = Matrix.Identity(4)                meta_rig  = self.evaluate_input("Meta-Armature")        meta_bone = self.evaluate_input("Meta-Bone")                if meta_rig:            if ( armOb := bpy.data.objects.get(meta_rig) ):                m = armOb.matrix_world                if ( b := armOb.data.bones.get(meta_bone)):                    # calculate the correct object-space matrix                    m = Matrix.Identity(3)                    bones = [] # from the last ancestor, mult the matrices until we get to b                    while (b): bones.append(b); b = b.parent                    while (bones): b = bones.pop(); m = m @ b.matrix                    m = Matrix.Translation(b.head_local) @ m.to_4x4()                    #                    m[3][3] = b.length # this is where I arbitrarily decided to store length                # else:                #     prRed("no bone for MetaRig node ", self)        else:            raise RuntimeError(wrapRed(f"No meta-rig input for MetaRig node {self}"))                self.parameters["Matrix"] = m        self.prepared = True        self.executed = True    def fill_parameters(self):        fill_parameters(self)        # self.parameters["Matrix"] = None # why in theclass UtilityBoneProperties:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {}        self.outputs = {          "matrix" : NodeSocket(name = "matrix", node=self),          "matrix_local" : NodeSocket(name = "matrix_local", node=self),          "matrix_basis" : NodeSocket(name = "matrix_basis", node=self),          "head" : NodeSocket(name = "head", node=self),          "tail" : NodeSocket(name = "tail", node=self),          "length" : NodeSocket(name = "length", node=self),          "rotation" : NodeSocket(name = "rotation", node=self),          "location" : NodeSocket(name = "location", node=self),          "scale" : NodeSocket(name = "scale", node=self),        }        self.parameters = {          "matrix":None,           "matrix_local":None,           "matrix_basis":None,           "head":None,           "tail":None,           "length":None,           "rotation":None,           "location":None,           "scale":None,         }        self.node_type = "UTILITY"        #        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True    def fill_parameters(self):        pass#fill_parameters(self)        # TODO this should probably be moved to Linksclass UtilityDriverVariable:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Variable Type"   : NodeSocket(is_input = True, name = "Variable Type", node = self),          "Property"   : NodeSocket(is_input = True, name = "Property", node = self),          "Property Index"   : NodeSocket(is_input = True, name = "Property Index", node = self),          "Evaluation Space"   : NodeSocket(is_input = True, name = "Evaluation Space", node = self),          "Rotation Mode"   : NodeSocket(is_input = True, name = "Rotation Mode", node = self),          "xForm 1"   : NodeSocket(is_input = True, name = "xForm 1", node = self),          "xForm 2"   : NodeSocket(is_input = True, name = "xForm 2", node = self),        }        self.outputs = {          "Driver Variable" : NodeSocket(name = "Driver Variable", node=self),        }        self.parameters = {          "Variable Type":None,           "Property":None,           "Property Index":None,           "Evaluation Space":None,           "Rotation Mode":None,           "xForm 1":None,           "xForm 2":None,        }        self.node_type = "DRIVER" # MUST be run in Pose mode        #        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = False            def evaluate_input(self, input_name):        if input_name == 'Property':            if self.inputs['Property'].is_linked:            # get the name instead...                trace = trace_single_line(self, input_name)                return trace[1].name # the name of the socket            return self.parameters["Property"]        return evaluate_input(self, input_name)            def GetxForm(self, index=1):        trace = trace_single_line(self, "xForm 1" if index == 1 else "xForm 2")        for node in trace[0]:            if (node.__class__ in [xFormRoot, xFormArmature, xFormBone]):                return node #this will fetch the first one, that's good!        return None    def bExecute(self, bContext = None,):        prepare_parameters(self)        #prPurple ("Executing Driver Variable Node")        xForm1 = self.GetxForm()        xForm2 = self.GetxForm(index=2)        # kinda clumsy        if xForm1 : xForm1 = xForm1.bGetObject()        if xForm2 : xForm2 = xForm2.bGetObject()                v_type = self.evaluate_input("Variable Type")        i = self.evaluate_input("Property Index"); dVarChannel = ""        if (i >= 0): #negative values will use the vector property.            if self.evaluate_input("Property") == 'location':                if   i == 0: dVarChannel = "LOC_X"                elif i == 1: dVarChannel = "LOC_Y"                elif i == 2: dVarChannel = "LOC_Z"                else: raise RuntimeError("Invalid property index for %s" % self)            if self.evaluate_input("Property") == 'rotation':                if   i == 0: dVarChannel = "ROT_X"                elif i == 1: dVarChannel = "ROT_Y"                elif i == 2: dVarChannel = "ROT_Z"                elif i == 3: dVarChannel = "ROT_W"                else: raise RuntimeError("Invalid property index for %s" % self)            if self.evaluate_input("Property") == 'scale':                if   i == 0: dVarChannel = "SCALE_X"                elif i == 1: dVarChannel = "SCALE_Y"                elif i == 2: dVarChannel = "SCALE_Z"                elif i == 3: dVarChannel = "SCALE_AVG"                else: raise RuntimeError("Invalid property index for %s" % self)            if self.evaluate_input("Property") == 'scale_average':                dVarChannel = "SCALE_AVG"        if dVarChannel: v_type = "TRANSFORMS"                my_var = {            "owner"         : xForm1, # will be filled in by Driver            "prop"          : self.evaluate_input("Property"), # will be filled in by Driver            "type"          : v_type,            "space"         : self.evaluate_input("Evaluation Space"),            "rotation_mode" : self.evaluate_input("Rotation Mode"),            "xForm 1"       : xForm1,#self.GetxForm(index = 1),            "xForm 2"       : xForm2,#self.GetxForm(index = 2),            "channel"       : dVarChannel,}                # Push parameter to downstream connected node.connected:        if (out := self.outputs["Driver Variable"]).is_linked:            self.parameters[out.name] = my_var            for link in out.links:                link.to_node.parameters[link.to_socket] = my_var        self.executed = True            class UtilityKeyframe:    '''A node representing a keyframe for a F-Curve'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Frame"   : NodeSocket(is_input = True, name = "Frame", node = self),          "Value"   : NodeSocket(is_input = True, name = "Value", node = self),        }        self.outputs = {          "Keyframe" : NodeSocket(name = "Keyframe", node=self),        }        self.parameters = {          "Frame":None,           "Value":None,           "Keyframe":{}, # for some reason I have to initialize this and then use the dict... why? TODO find out        }        self.node_type = "DRIVER" # MUST be run in Pose mode        setup_custom_props(self)        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        key = self.parameters["Keyframe"]        from mathutils import Vector        key["co"]= Vector( (self.evaluate_input("Frame"), self.evaluate_input("Value"),))        # eventually this will have the right data, TODO        # self.parameters["Keyframe"] = key        self.prepared = True        self.executed = Trueclass UtilityFCurve:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {}        self.outputs = {          "fCurve" : NodeSocket(name = "fCurve", node=self),        }        self.parameters = {          "Use_KeyFrame_Nodes": True, # HACK          "fCurve":None,         }        self.node_type = "UTILITY"        setup_custom_props(self)        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def evaluate_input(self, input_name):        return evaluate_input(self, input_name)    def bExecute(self, bContext = None,):        prepare_parameters(self)        from .utilities import get_node_prototype        np = get_node_prototype(self.signature, self.base_tree)        keys = []        #['amplitude', 'back', 'bl_rna', 'co', 'co_ui', 'easing', 'handle_left', 'handle_left_type', 'handle_right', 'handle_right_type',        # 'interpolation', 'period', 'rna_type', 'select_control_point', 'select_left_handle', 'select_right_handle', 'type']        if True: #np.use_kf_nodes:            for k in self.inputs.keys():                # print (self.inputs[k])                key = self.evaluate_input(k)                key["type"]="GENERATED"                key["interpolation"] = "LINEAR"                keys.append(key)        else:            raise NotImplementedError("Getting the keys from an fCurve isn't really working anymore lol need to fix")            fc_ob = np.fake_fcurve_ob            fc = fc_ob.animation_data.action.fcurves[0]            for k in fc.keyframe_points:                key = {}                for prop in dir(k):                    if ("__" in prop) or ("bl_" in prop): continue                    #it's __name__ or bl_rna or something                    key[prop] = getattr(k, prop)                keys.append(key)                # Push parameter to downstream connected node.connected:        # TODO: find out if this is necesary, even        if (out := self.outputs["fCurve"]).is_linked:            self.parameters[out.name] = keys            for link in out.links:                link.to_node.parameters[link.to_socket] = keys        # the above was a HACK. I don't want nodes modiying their descenedents.        # If the above was necessary, I want to get an error from it so I can fix it in the descendent's class        self.prepared = True        self.executed = True                class UtilityDriver:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Driver Type"   : NodeSocket(is_input = True, name = "Driver Type", node = self),          "Expression"   : NodeSocket(is_input = True, name = "Expression", node = self),          "fCurve"   : NodeSocket(is_input = True, name = "fCurve", node = self),        }        self.outputs = {          "Driver" : NodeSocket(name = "Driver", node=self),        }        from .drivers import MantisDriver        self.parameters = {          "Driver Type":None,           "Expression":None,           "fCurve":None,          "Driver":MantisDriver(),         }        self.node_type = "DRIVER" # MUST be run in Pose mode        setup_custom_props(self)        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True    def bExecute(self, bContext = None,):        prepare_parameters(self)        from .drivers import MantisDriver        #prPurple("Executing Driver Node")        my_vars = []                for inp in list(self.inputs.keys() )[3:]:            if (new_var := self.evaluate_input(inp)):                new_var["name"] = inp                my_vars.append(new_var)            else:                raise RuntimeError("Failed to initialize Driver variable")        my_driver ={ "owner"      :  None,                     "prop"       :  None, # will be filled out in the node that uses the driver                     "expression" :  self.evaluate_input("Expression"),                     "ind"        :  -1, # same here                     "type"       :  self.evaluate_input("Driver Type"),                     "vars"       :  my_vars,                     "keys"       :  self.evaluate_input("fCurve"), }                my_driver = MantisDriver(my_driver)                self.parameters["Driver"].update(my_driver)        print("Initializing driver %s " % (wrapPurple(self.__repr__())) )        self.executed = Trueclass UtilitySwitch:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {        #   "xForm"   : NodeSocket(is_input = True, name = "xForm", node = self),          "Parameter"   : NodeSocket(is_input = True, name = "Parameter", node = self),          "Parameter Index"   : NodeSocket(is_input = True, name = "Parameter Index", node = self),          "Invert Switch" : NodeSocket(is_input = True, name = "Invert Switch", node = self),        }        self.outputs = {          "Driver" : NodeSocket(name = "Driver", node=self),        }        from .drivers import MantisDriver        self.parameters = {        #   "xForm":None,           "Parameter":None,          "Parameter Index":None,           "Invert Switch":None,          "Driver":MantisDriver(), # empty for now        }        self.node_type = "DRIVER" # MUST be run in Pose mode        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = False    def evaluate_input(self, input_name):        if input_name == 'Parameter':            if self.inputs['Parameter'].is_connected:                trace = trace_single_line(self, input_name)                return trace[1].name # the name of the socket            return self.parameters["Parameter"]        return evaluate_input(self, input_name)    def GetxForm(self,):        trace = trace_single_line(self, "Parameter" )        for node in trace[0]:            if (node.__class__ in [xFormRoot, xFormArmature, xFormBone]):                return node #this will fetch the first one, that's good!        return None    def bExecute(self, bContext = None,):        #prepare_parameters(self)        #prPurple ("Executing Switch Node")        xForm = self.GetxForm()        if xForm : xForm = xForm.bGetObject()         if not xForm:            raise RuntimeError("Could not evaluate xForm for %s" % self)        from .drivers import MantisDriver        my_driver ={ "owner" : None,                     "prop"  : None, # will be filled out in the node that uses the driver                      "ind"   : -1, # same here                     "type"  : "SCRIPTED",                     "vars"  : [ { "owner" : xForm,                                   "prop"  : self.evaluate_input("Parameter"),                                   "name"  : "a",                                   "type"  : "SINGLE_PROP", } ],                     "keys"  : [ { "co":(0,0),                                   "interpolation": "LINEAR",                                   "type":"KEYFRAME",}, #display type                                 { "co":(1,1),                                   "interpolation": "LINEAR",                                   "type":"KEYFRAME",},], }        my_driver   ["expression"] = "a"                my_driver = MantisDriver(my_driver)    # this makes it so I can check for type later!                if self.evaluate_input("Invert Switch") == True:            my_driver   ["expression"] = "1 - a"                # this way, regardless of what order things are handled, the        #  driver is sent to the next node.        # In the case of some drivers, the parameter may be sent out        #  before it's filled in (because there is a circular dependency)        # I want to support this behaviour because Blender supports it,        #  but I also do not want to support it because it makes things        #  more complex and IMO it's bad practice.        # We do not make a copy. We update the driver, so that        #  the same instance is filled out.         self.parameters["Driver"].update(my_driver)        print("Initializing driver %s " % (wrapPurple(self.__repr__())) )        self.executed = Trueclass UtilityCombineThreeBool:    '''A node for combining three booleans into a boolean three-tuple'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "X"   : NodeSocket(is_input = True, name = "X", node = self),          "Y"   : NodeSocket(is_input = True, name = "Y", node = self),          "Z"   : NodeSocket(is_input = True, name = "Z", node = self),        }        self.outputs = {          "Three-Bool" : NodeSocket(name = "Three-Bool", node=self),        }        self.parameters = {          "X":None,          "Y":None,          "Z":None, }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        #prPurple("Executing CombineThreeBool Node")        #prepare_parameters(self)        self.parameters["Three-Bool"] = (          self.evaluate_input("X"),          self.evaluate_input("Y"),          self.evaluate_input("Z"), )        # DO:        # figure out how to get the driver at execute-time        #  because Blender allows circular dependencies in drivers        #  (sort of), I need to adopt a more convoluted way of doing        #  things here or elsewhere.        self.prepared = True        self.executed = True# Note this is a copy of the above. This needs to be de-duplicated into  # a simpler CombineVector node_container.  # TODOclass UtilityCombineVector:    '''A node for combining three floats into a vector'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "X"   : NodeSocket(is_input = True, name = "X", node = self),          "Y"   : NodeSocket(is_input = True, name = "Y", node = self),          "Z"   : NodeSocket(is_input = True, name = "Z", node = self),        }        self.outputs = {          "Vector" : NodeSocket(name = "Vector", node=self),        }        self.parameters = {          "X":None,          "Y":None,          "Z":None, }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        #prPurple("Executing CombineVector Node")        prepare_parameters(self)        self.parameters["Vector"] = (          self.evaluate_input("X"),          self.evaluate_input("Y"),          self.evaluate_input("Z"), )        self.prepared = True        self.executed = Trueclass UtilityCatStrings:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "String_1"   : NodeSocket(is_input = True, name = "String_1", node = self),          "String_2"   : NodeSocket(is_input = True, name = "String_2", node = self),        }        self.outputs = {          "OutputString" : NodeSocket(name = "OutputString", node=self),        }        self.parameters = {          "String_1":None,           "String_2":None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False        def bPrepare(self, bContext = None,):        self.parameters["OutputString"] = self.evaluate_input("String_1")+self.evaluate_input("String_2")        self.prepared = True        self.executed = Trueclass InputLayerMask:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {        }        self.outputs = {          "Layer Mask" : NodeSocket(is_input = True, name = "Layer Mask", node = self),        }        self.parameters = {          "Layer Mask":None,         }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = Trueclass InputExistingGeometryObject:    '''A node representing an existing object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Name"   : NodeSocket(is_input = True, name = "Name", node = self),        }        self.outputs = {          "Object" : NodeSocket(is_input = False, name = "Object", node=self),        }        self.parameters = {          "Name":None,           "Object":None,         }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True        # mode for interface consistency    def bGetObject(self, mode=''):        from bpy import data        return data.objects.get( self.evaluate_input("Name") )class InputExistingGeometryData:    '''A node representing existing object data'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Name"   : NodeSocket(is_input = True, name = "Name", node = self),        }        self.outputs = {          "Geometry" : NodeSocket(is_input = False, name = "Geometry", node=self),        }        self.parameters = {          "Name":None,           "Geometry":None,         }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = True    # mode for interface consistency    def bGetObject(self, mode=''):        from bpy import data        # first try Curve, then try Mesh        bObject = data.curves.get(self.evaluate_input("Name"))        if not bObject:            bObject = data.meshes.get(self.evaluate_input("Name"))        if bObject is None:            raise RuntimeError(f"Could not find a mesh or curve datablock named \"{self.evaluate_input('Name')}\" for node {self}")        return bObject        class UtilityGetBoneLength:    '''A node to get the length of a bone matrix'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Bone Matrix"   : NodeSocket(is_input = True, name = "Bone Matrix", node = self),        }        self.outputs = {          "Bone Length"   : NodeSocket(name = "Bone Length", node = self),        }        self.parameters = {          "Bone Length":None,         }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        # print (self.inputs['Bone Matrix'].links)        if l := self.evaluate_input("Bone Matrix"):            self.parameters["Bone Length"] = l[3][3]        self.prepared = True        self.executed = Trueclass UtilityPointFromBoneMatrix:    '''A node representing an armature object'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Bone Matrix"   : NodeSocket(is_input = True, name = "Bone Matrix", node = self),          "Head/Tail"     : NodeSocket(is_input = True, name = "Head/Tail", node = self),        }        self.outputs = {          "Point"     : NodeSocket(name = "Point", node = self),        }        self.parameters = {          "Bone Matrix":None,           "Head/Tail":None,          "Point":None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    # TODO: find out why this is sometimes not ready at bPrepare phase    def bPrepare(self, bContext = None,):        from mathutils import Vector        matrix = self.evaluate_input("Bone Matrix")        head, rotation, _scale = matrix.copy().decompose()        tail = head + (rotation @ Vector((0,1,0)))*matrix[3][3]        self.parameters["Point"] = head.lerp(tail, self.evaluate_input("Head/Tail"))        self.prepared = True        self.executed = Trueclass UtilitySetBoneLength:    '''Sets the length of a Bone's matrix'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Bone Matrix"   : NodeSocket(is_input = True, name = "Bone Matrix", node = self),          "Length"        : NodeSocket(is_input = True, name = "Length", node = self),        }        self.outputs = {          "Bone Matrix"   : NodeSocket(name = "Bone Matrix", node = self),        }        self.parameters = {          "Bone Matrix":None,           "Length":None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False        def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.evaluate_input("Bone Matrix"):            matrix = matrix.copy()            # print (self.inputs["Length"].links)            matrix[3][3] = self.evaluate_input("Length")            self.parameters["Length"] = self.evaluate_input("Length")            self.parameters["Bone Matrix"] = matrix        self.prepared = True        self.executed = True  class UtilityMatrixSetLocation:    '''Sets the location of a matrix'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Matrix"        : NodeSocket(is_input = True, name = "Matrix", node = self),          "Location"      : NodeSocket(is_input = True, name = "Location", node = self),        }        self.outputs = {          "Matrix"        : NodeSocket(name = "Matrix", node = self),        }        self.parameters = {          "Matrix"   : None,           "Location" : None,        }        self.node_type = "UTILITY"        self.connections, self.hierarchy_connections = [], []        self.dependencies, self.hierarchy_dependencies = [], []        self.prepared, self.executed = False,False        def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.evaluate_input("Matrix"):            matrix = matrix.copy()            # print (self.inputs["Length"].links)            loc = self.evaluate_input("Location")            matrix[0][3] = loc[0]; matrix[1][3] = loc[1]; matrix[2][3] = loc[2]            self.parameters["Matrix"] = matrix        self.prepared = True        self.executed = Trueclass UtilityMatrixGetLocation:    '''Gets the location of a matrix'''    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {          "Matrix"        : NodeSocket(is_input = True, name = "Matrix", node = self),        }        self.outputs = {          "Location"      : NodeSocket(name = "Location", node = self),        }        self.parameters = {          "Matrix"   : None,           "Location" : None,        }        self.node_type = "UTILITY"        self.connections, self.hierarchy_connections = [], []        self.dependencies, self.hierarchy_dependencies = [], []        self.prepared, self.executed = False,False        def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.evaluate_input("Matrix"):            self.parameters["Location"] = matrix.to_translation()        self.prepared = True; self.executed = Trueclass UtilityMatrixFromXForm:    """Returns the matrix of the given xForm node."""    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {          "xForm"        : NodeSocket(is_input = True, name = "xForm", node = self),        }        self.outputs = {          "Matrix"      : NodeSocket(name = "Matrix", node = self),        }        self.parameters = {          "Matrix"   : None,        }        self.node_type = "UTILITY"        self.connections, self.hierarchy_connections = [], []        self.dependencies, self.hierarchy_dependencies = [], []        self.prepared, self.executed = False,False        def GetxForm(self):        trace = trace_single_line(self, "xForm")        for node in trace[0]:            if (node.node_type == 'XFORM'):                return node        raise GraphError("%s is not connected to an xForm" % self)            def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.GetxForm().parameters.get("Matrix"):            self.parameters["Matrix"] = matrix.copy()        self.prepared = True; self.executed = Trueclass UtilityAxesFromMatrix:    """Returns the axes of the given matrix."""    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.signature = signature        self.inputs = {          "Matrix"        : NodeSocket(is_input = True, name = "Matrix", node = self),        }        self.outputs = {          "X Axis"      : NodeSocket(name = "X Axis", node = self),          "Y Axis"      : NodeSocket(name = "Y Axis", node = self),          "Z Axis"      : NodeSocket(name = "Z Axis", node = self),        }        self.parameters = {          "Matrix"   : None,          "X Axis"   : None,          "Y Axis"   : None,          "Z Axis"   : None,        }        self.node_type = "UTILITY"        self.connections, self.hierarchy_connections = [], []        self.dependencies, self.hierarchy_dependencies = [], []        self.prepared, self.executed = False,False            def bPrepare(self, bContext = None,):        from mathutils import Vector        if matrix := self.evaluate_input("Matrix"):            matrix= matrix.copy().to_3x3()            self.parameters['X Axis'] = matrix @ Vector((1,0,0))            self.parameters['Y Axis'] = matrix @ Vector((0,1,0))            self.parameters['Z Axis'] = matrix @ Vector((0,0,1))        self.prepared = True; self.executed = Trueclass UtilityBoneMatrixHeadTailFlip:    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Bone Matrix"   : NodeSocket(is_input = True, name = "Bone Matrix", node = self),        }        self.outputs = {          "Bone Matrix"   : NodeSocket(name = "Bone Matrix", node = self),        }        self.parameters = {          "Bone Matrix":None,         }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        from mathutils import Vector, Matrix, Quaternion        from bpy.types import Bone        if matrix := self.evaluate_input("Bone Matrix"):            axis, roll = Bone.AxisRollFromMatrix(matrix.to_3x3())            new_mat = Bone.MatrixFromAxisRoll(-1*axis, roll)            length = matrix[3][3]            new_mat.resize_4x4()         # last column contains            new_mat[0][3] = matrix[0][3] + axis[0]*length # x location            new_mat[1][3] = matrix[1][3] + axis[1]*length # y location            new_mat[2][3] = matrix[2][3] + axis[2]*length # z location            new_mat[3][3] = length                           # length            self.parameters["Bone Matrix"] = new_mat        self.prepared, self.executed = True, Trueclass UtilityMatrixTransform:    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Matrix 1"   : NodeSocket(is_input = True, name = "Matrix 1", node = self),          "Matrix 2"   : NodeSocket(is_input = True, name = "Matrix 2", node = self),        }        self.outputs = {          "Out Matrix"     : NodeSocket(name = "Out Matrix", node = self),        }        self.parameters = {          "Matrix 1"   : None,          "Matrix 2"   : None,          "Out Matrix" : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        from mathutils import Vector        mat1 = self.evaluate_input("Matrix 1"); mat2 = self.evaluate_input("Matrix 2")        if mat1 and mat2:            mat1copy = mat1.copy()            self.parameters["Out Matrix"] = mat2 @ mat1copy            self.parameters["Out Matrix"].translation = mat1copy.to_translation()+ mat2.to_translation()        else:            raise RuntimeError(wrapRed(f"Node {self} did not receive all matrix inputs... found input 1? {mat1 is not None}, 2? {mat2 is not None}"))        self.prepared = True        self.executed = Trueclass UtilityTransformationMatrix:    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Operation"   : NodeSocket(is_input = True, name = "Operation", node = self),          "Vector"        : NodeSocket(is_input = True, name = "Vector", node = self),          "W"   : NodeSocket(is_input = True, name = "W", node = self),        }        self.outputs = {          "Matrix"     : NodeSocket(name = "Matrix", node = self),        }        self.parameters = {          "Operation"   : None,          "Origin"      : None,          "Vector"        : None,          "W"   : None,          "Matrix"      : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False# enumMatrixTransform  = (('TRANSLATE', 'Translate', 'Translate'),#                         ('ROTATE_AXIS_ANGLE', "Rotate (Vector-angle)", "Rotates a number of radians around an axis"),#                         ('ROTATE_EULER', "Rotate (Euler)", "Euler Rotation"),#                         ('ROTATE_QUATERNION', "Rotate (Quaternion)", "Quaternion Rotation"),#                         ('SCALE', "Scale", "Scale"),)    def bPrepare(self, bContext = None,):        from mathutils import Matrix, Vector        if (operation := self.evaluate_input("Operation")) == 'ROTATE_AXIS_ANGLE':            # this can, will, and should fail if the axis is 0,0,0            self.parameters["Matrix"] = rotMat = Matrix.Rotation(self.evaluate_input("W"), 4, Vector(self.evaluate_input("Vector")).normalized())        elif (operation := self.evaluate_input("Operation")) == 'TRANSLATE':            m = Matrix.Identity(4)            if axis := self.evaluate_input("Vector"):                m[0][3]=axis[0];m[1][3]=axis[1];m[2][3]=axis[2]            self.parameters['Matrix'] = m        else:            raise NotImplementedError(self.evaluate_input("Operation").__repr__()+ "  Operation not yet implemented.")        self.prepared = True        self.executed = Trueclass UtilityIntToString:    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Number"        : NodeSocket(is_input = True, name = "Number", node = self),          "Zero Padding"  : NodeSocket(is_input = True, name = "Zero Padding", node = self),        }        self.outputs = {          "String"        : NodeSocket(name = "String", node = self),        }        self.parameters = {          "Number"        : None,          "Zero Padding"  : None,          "String"        : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        number = self.evaluate_input("Number")        zeroes = self.evaluate_input("Zero Padding")        # I'm casting to int because I want to support any number, even though the node asks for int.        self.parameters["String"] = str(int(number)).zfill(int(zeroes))        self.prepared = True        self.executed = Trueclass UtilityArrayGet:    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Index"          : NodeSocket(is_input = True, name = "Index", node = self),          "OoB Behaviour"  : NodeSocket(is_input = True, name = "OoB Behaviour", node = self),          "Array"          : NodeSocket(is_input = True, name = "Array", node = self),        }        self.outputs = {          "Output"        : NodeSocket(name = "Output", node = self),        }        self.parameters = {          "Index"          : None,          "OoB Behaviour"  : None,          "Array"          : None,          "Output"         : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):      if self.prepared == False:        oob   = self.evaluate_input("OoB Behaviour")        index = self.evaluate_input("Index")        from .utilities import cap, wrap                # we must assume that the array has sent the correct number of links        if oob == 'WRAP':            index = index % len(self.inputs['Array'].links)        if oob == 'HOLD':            index = cap(index, len(self.inputs['Array'].links)-1)        # relink the connections and then kill all the links to and from the array        from .utilities import init_connections, init_dependencies        l = self.inputs["Array"].links[index]        for link in self.outputs["Output"].links:            to_node = link.to_node            l.from_node.outputs[l.from_socket].connect(to_node, link.to_socket)            link.die()            init_dependencies(to_node)        from_node=l.from_node        for inp in self.inputs.values():            for l in inp.links:              l.die()        init_connections(from_node)        if self in from_node.hierarchy_connections:          raise RuntimeError()        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = True        self.executed = Trueclass UtilityPrint:    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Input"          : NodeSocket(is_input = True, name = "Input", node = self),        }        self.outputs = {}        self.parameters = {          "Input"          : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections = []        self.connections = []        self.hierarchy_dependencies = []        self.dependencies = []        self.prepared = False        self.executed = False    def bPrepare(self, bContext = None,):        if my_input := self.evaluate_input("Input"):            prGreen(my_input)        # else:        #     prRed("No input to print.")        self.prepared = True    def bExecute(self, bContext = None,):        if my_input := self.evaluate_input("Input"):            prGreen(my_input)        # else:        #     prRed("No input to print.")        self.executed = Trueclass UtilityCompare:    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "A"           : NodeSocket(is_input = True, name = "A", node = self),          "B"           : NodeSocket(is_input = True, name = "B", node = self),        }        self.outputs = {          "Result"      : NodeSocket(name = "Result", node = self),        }        self.parameters = {          "A"           : None,          "B"           : None,          "Result"      : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections, self.connections = [], []        self.hierarchy_dependencies, self.dependencies = [], []        self.prepared, self.executed = False, False    def bPrepare(self, bContext = None,):        self.parameters["Result"] = self.evaluate_input("A") == self.evaluate_input("B")        self.prepared = True; self.executed = Trueclass UtilityChoose:    def __init__(self, signature, base_tree):        self.base_tree=base_tree        self.executed = False        self.signature = signature        self.inputs = {          "Condition"   : NodeSocket(is_input = True, name = "Condition", node = self),          "A"           : NodeSocket(is_input = True, name = "A", node = self),          "B"           : NodeSocket(is_input = True, name = "B", node = self),        }        self.outputs = {          "Result"      : NodeSocket(name = "Result", node = self),        }        self.parameters = {          "Condition"   : None,          "A"           : None,          "B"           : None,          "Result"      : None,        }        self.node_type = "UTILITY"        self.hierarchy_connections, self.connections = [], []        self.hierarchy_dependencies, self.dependencies = [], []        self.prepared, self.executed = False, False    def bPrepare(self, bContext = None,):        condition = self.evaluate_input("Condition")        if condition:            self.parameters["Result"] = self.evaluate_input("B")        else:            self.parameters["Result"] = self.evaluate_input("A")        self.prepared = True        self.executed = Truefor c in TellClasses():    setup_container(c)
 |