from .node_container_common import * from bpy.types import Bone, NodeTree from .base_definitions import MantisNode, GraphError, FLOAT_EPSILON from .link_socket_templates import * def TellClasses(): return [ # special LinkInherit, # copy LinkCopyLocation, LinkCopyRotation, LinkCopyScale, LinkCopyTransforms, LinkTransformation, # limit LinkLimitLocation, LinkLimitRotation, LinkLimitScale, LinkLimitDistance, # tracking LinkStretchTo, LinkDampedTrack, LinkLockedTrack, LinkTrackTo, #misc LinkInheritConstraint, LinkArmature, # IK LinkInverseKinematics, LinkSplineIK, # Drivers LinkDrivenParameter, ] # set the name if it is available, otherwise just use the constraint's nice name set_constraint_name = lambda nc : nc.evaluate_input("Name") if nc.evaluate_input("Name") else nc.__class__.__name__ class MantisLinkNode(MantisNode): def __init__(self, signature : tuple, base_tree : NodeTree, socket_templates : list[SockTemplate]=[]): super().__init__(signature, base_tree, socket_templates) self.node_type = 'LINK' self.prepared = True; self.bObject=[] def evaluate_input(self, input_name, index=0): # should catch 'Target', 'Pole Target' and ArmatureConstraint targets, too if ('Target' in input_name) and input_name not in ["Target Space", "Use Target Z"]: socket = self.inputs.get(input_name) if socket.is_linked: return socket.links[0].from_node return None else: return super().evaluate_input(input_name) def gen_property_socket_map(self) -> dict: props_sockets = super().gen_property_socket_map() if (os := self.inputs.get("Owner Space")) and os.is_connected and os.links[0].from_node.node_type == 'XFORM': del props_sockets['owner_space'] if ts := self.inputs.get("Target_Space") and ts.is_connected and ts.links[0].from_node.node_type == 'XFORM': del props_sockets['target_space'] return props_sockets def set_custom_space(self): for c in self.bObject: if (os := self.inputs.get("Owner Space")) and os.is_connected and os.links[0].from_node.node_type == 'XFORM': c.owner_space='CUSTOM' xf = self.inputs["Owner Space"].links[0].from_node.bGetObject(mode="OBJECT") if isinstance(xf, Bone): c.space_object=self.inputs["Owner Space"].links[0].from_node.bGetParentArmature(); c.space_subtarget=xf.name else: c.space_object=xf if ts := self.inputs.get("Target_Space") and ts.is_connected and ts.links[0].from_node.node_type == 'XFORM': c.owner_space='CUSTOM' xf = self.inputs["Target_Space Space"].links[0].from_node.bGetObject(mode="OBJECT") if isinstance(xf, Bone): c.space_object=self.inputs["Target_Space Space"].links[0].from_node.bGetParentArmature(); c.space_subtarget=xf.name else: c.space_object=xf def GetxForm(nc, output_name="Output Relationship"): break_condition= lambda node : node.node_type=='XFORM' xforms = trace_line_up_branching(nc, output_name, break_condition) return_me=[] for xf in xforms: if xf.node_type != 'XFORM': continue if xf in return_me: continue return_me.append(xf) return return_me def reset_execution(self): super().reset_execution() self.prepared = True; self.bObject = [] def bFinalize(self, bContext=None): finish_drivers(self) #*#-------------------------------#++#-------------------------------#*# # L I N K N O D E S #*#-------------------------------#++#-------------------------------#*# class LinkInherit(MantisLinkNode): '''A node representing inheritance''' def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkInheritSockets) self.init_parameters() self.set_traverse([('Parent', 'Inheritance')]) self.executed = True def GetxForm(self): # I think this is only run in display update. trace = trace_single_line_up(self, "Inheritance") for node in trace[0]: if (node.node_type == 'XFORM'): return node raise GraphError("%s is not connected to a downstream xForm" % self) class LinkCopyLocation(MantisLinkNode): '''A node representing Copy Location''' def __init__(self, signature : tuple, base_tree : NodeTree,): super().__init__(signature, base_tree, LinkCopyLocationSockets) additional_parameters = { "Name":None } self.init_parameters(additional_parameters=additional_parameters) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): c = xf.bGetObject().constraints.new('COPY_LOCATION') self.get_target_and_subtarget(c) print(wrapGreen("Creating ")+wrapWhite("Copy Location")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) self.set_custom_space() props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkCopyRotation(MantisLinkNode): '''A node representing Copy Rotation''' def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkCopyRotationSockets) additional_parameters = { "Name":None } self.init_parameters(additional_parameters=additional_parameters) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): c = xf.bGetObject().constraints.new('COPY_ROTATION') self.get_target_and_subtarget(c) print(wrapGreen("Creating ")+wrapWhite("Copy Rotation")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) rotation_order = self.evaluate_input("RotationOrder") if ((rotation_order == 'QUATERNION') or (rotation_order == 'AXIS_ANGLE')): c.euler_order = 'AUTO' else: try: c.euler_order = rotation_order except TypeError: # it's a driver or incorrect c.euler_order = 'AUTO' if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) self.set_custom_space() props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkCopyScale(MantisLinkNode): '''A node representing Copy Scale''' def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkCopyScaleSockets) additional_parameters = { "Name":None } self.init_parameters(additional_parameters=additional_parameters) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): c = xf.bGetObject().constraints.new('COPY_SCALE') self.get_target_and_subtarget(c) print(wrapGreen("Creating ")+wrapWhite("Copy Scale")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) if self.inputs["Owner Space"].is_connected and self.inputs["Owner Space"].links[0].from_node.node_type == 'XFORM': c.owner_space='CUSTOM' xf = self.inputs["Owner Space"].links[0].from_node.bGetObject(mode="OBJECT") if isinstance(xf, Bone): c.space_object=self.inputs["Owner Space"].links[0].from_node.bGetParentArmature(); c.space_subtarget=xf.name else: c.space_object=xf if self.inputs["Target Space"].is_connected and self.inputs["Target Space"].links[0].from_node.node_type == 'XFORM': c.target_space='CUSTOM' xf = self.inputs["Target Space"].links[0].from_node.bGetObject(mode="OBJECT") if isinstance(xf, Bone): c.space_object=self.inputs["Owner Space"].links[0].from_node.bGetParentArmature(); c.space_subtarget=xf.name else: c.space_object=xf props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkCopyTransforms(MantisLinkNode): '''A node representing Copy Transfoms''' def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkCopyTransformsSockets) additional_parameters = { "Name":None } self.init_parameters(additional_parameters=additional_parameters) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): c = xf.bGetObject().constraints.new('COPY_TRANSFORMS') self.get_target_and_subtarget(c) print(wrapGreen("Creating ")+wrapWhite("Copy Transforms")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) self.set_custom_space() props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkTransformation(MantisLinkNode): '''A node representing Copy Transfoms''' def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkTransformationSockets) self.init_parameters(additional_parameters={"Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def ui_modify_socket(self, ui_socket, socket_name=None): from_suffix, to_suffix = '', '' if self.evaluate_input("Map From") == 'ROTATION': from_suffix='_rot' elif self.evaluate_input("Map From") == 'SCALE': from_suffix='_scale' if self.evaluate_input("Map To") == 'ROTATION': to_suffix='_rot' elif self.evaluate_input("Map To") == 'SCALE': to_suffix='_scale' if 'To' in ui_socket.name or 'From' in ui_socket.name and from_suffix or to_suffix: for s_temp in self.socket_templates: if s_temp.name == ui_socket.name: break if 'from' in s_temp.blender_property: socket_name=s_temp.blender_property+from_suffix else: socket_name=s_temp.blender_property+to_suffix return self.update_socket_value(socket_name, ui_socket.default_value) return super().ui_modify_socket(ui_socket, socket_name) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): c = xf.bGetObject().constraints.new('TRANSFORM') self.get_target_and_subtarget(c) print(wrapGreen("Creating ")+wrapWhite("Transformation")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) self.set_custom_space() props_sockets = self.gen_property_socket_map() # we have to fix the blender-property for scale/rotation # because Blender stores these separately. # I do not care that this code is ugly. from_suffix, to_replace = '', '' if self.evaluate_input("Map From") == 'ROTATION': from_suffix='_rot' elif self.evaluate_input("Map From") == 'SCALE': from_suffix='_scale' if self.evaluate_input("Map To") == 'ROTATION': to_replace='_rot' elif self.evaluate_input("Map To") == 'SCALE': to_replace='_scale' if from_suffix: for axis in ['x', 'y', 'z']: stub='from_min_'+axis props_sockets[stub+from_suffix]=props_sockets[stub] del props_sockets[stub] stub='from_max_'+axis props_sockets[stub+from_suffix]=props_sockets[stub] del props_sockets[stub] if to_replace: for axis in ['x', 'y', 'z']: stub='to_min_'+axis props_sockets[stub+to_replace]=props_sockets[stub] del props_sockets[stub] stub='to_max_'+axis props_sockets[stub+to_replace]=props_sockets[stub] del props_sockets[stub] evaluate_sockets(self, c, props_sockets) self.executed = True class LinkLimitLocation(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkLimitLocationScaleSockets) self.init_parameters(additional_parameters={ "Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): c = xf.bGetObject().constraints.new('LIMIT_LOCATION') print(wrapGreen("Creating ")+wrapWhite("Limit Location")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) self.set_custom_space() props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkLimitRotation(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkLimitRotationSockets) self.init_parameters(additional_parameters={ "Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): c = xf.bGetObject().constraints.new('LIMIT_ROTATION') print(wrapGreen("Creating ")+wrapWhite("Limit Rotation")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) self.set_custom_space() props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkLimitScale(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkLimitLocationScaleSockets) self.init_parameters(additional_parameters={ "Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): c = xf.bGetObject().constraints.new('LIMIT_SCALE') print(wrapGreen("Creating ")+wrapWhite("Limit Scale")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) self.set_custom_space() props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkLimitDistance(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkLimitDistanceSockets) self.init_parameters(additional_parameters={ "Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapWhite("Limit Distance")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) c = xf.bGetObject().constraints.new('LIMIT_DISTANCE') self.get_target_and_subtarget(c) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) self.set_custom_space() props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True # Tracking class LinkStretchTo(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkStretchToSockets) self.init_parameters(additional_parameters={ "Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapWhite("Stretch-To")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) c = xf.bGetObject().constraints.new('STRETCH_TO') self.get_target_and_subtarget(c) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) if (self.evaluate_input("Original Length") == 0): # this is meant to be set automatically. c.rest_length = xf.bGetObject().bone.length self.executed = True class LinkDampedTrack(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkDampedTrackSockets) self.init_parameters(additional_parameters={ "Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapWhite("Damped Track")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) c = xf.bGetObject().constraints.new('DAMPED_TRACK') self.get_target_and_subtarget(c) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkLockedTrack(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree,LinkLockedTrackSockets) self.init_parameters(additional_parameters={"Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapWhite("Locked Track")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) c = xf.bGetObject().constraints.new('LOCKED_TRACK') self.get_target_and_subtarget(c) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkTrackTo(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkTrackToSockets) self.init_parameters(additional_parameters={"Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapWhite("Track-To")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) c = xf.bGetObject().constraints.new('TRACK_TO') self.get_target_and_subtarget(c) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True class LinkInheritConstraint(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkInheritConstraintSockets) self.init_parameters(additional_parameters={"Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapWhite("Child-Of")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) c = xf.bGetObject().constraints.new('CHILD_OF') self.get_target_and_subtarget(c) if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) c.set_inverse_pending self.executed = True class LinkInverseKinematics(MantisLinkNode): def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkInverseKinematicsSockets) self.init_parameters(additional_parameters={"Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def get_base_ik_bone(self, ik_bone): chain_length : int = (self.evaluate_input("Chain Length")) if not isinstance(chain_length, (int, float)): raise GraphError(f"Chain Length must be an integer number in {self}::Chain Length") if chain_length == 0: chain_length = int("inf") base_ik_bone = ik_bone; i=1 while (i None: from math import pi from .utilities import wrap constraint.pole_angle = wrap(-pi, pi, angle) def calc_pole_angle_pre(self, c, ik_bone): """ This function gets us most of the way to a correct IK pole angle. Unfortunately, due to the unpredictable nature of the iterative IK calculation, I can't figure out an exact solution. So we do a bisect search in calc_pole_angle_post(). """ # TODO: instead of these checks, convert all to armature local space. But this is tedious. if not c.target: raise GraphError(f"IK Constraint {self} must have target.") elif c.target.type != "ARMATURE": raise NotImplementedError(f"Currently, IK Constraint Target for {self} must be a bone within the same armature.") if c.pole_target.type != "ARMATURE": raise NotImplementedError(f"Currently, IK Constraint Pole Target for {self} must be a bone within the same armature.") ik_handle = c.target.pose.bones[c.subtarget] if ik_handle.id_data != ik_bone.id_data: raise NotImplementedError(f"Currently, IK Constraint Target for {self} must be a bone within the same armature.") ik_pole = c.pole_target.pose.bones[c.pole_subtarget] if ik_pole.id_data != ik_bone.id_data: raise NotImplementedError(f"Currently,IK Constraint Pole Target for {self} must be a bone within the same armature.") base_ik_bone = self.get_base_ik_bone(ik_bone) start_effector = base_ik_bone.bone.head_local end_effector = ik_handle.bone.head_local pole_location = ik_pole.bone.head_local # this is the X-Axis of the bone's rest-pose, added to its bone knee_location = base_ik_bone.bone.matrix_local.col[0].xyz+start_effector ik_axis = (end_effector-start_effector).normalized() from .utilities import project_point_to_plane pole_planar_projection = project_point_to_plane(pole_location, start_effector, ik_axis) # this planar projection is necessary because the IK axis is different than the base_bone's y axis planar_projection = project_point_to_plane(knee_location, start_effector, ik_axis) knee_direction =(planar_projection - start_effector).normalized() pole_direction =(pole_planar_projection - start_effector).normalized() return knee_direction.angle(pole_direction) def calc_pole_angle_post(self, c, ik_bone, context): """ This function should give us a completely accurate result for IK. """ from time import time start_time=time() def signed_angle(vector_u, vector_v, normal): # it seems that this fails if the vectors are exactly aligned under certain circumstances. angle = vector_u.angle(vector_v, 0.0) # So we use a fallback of 0 # Normal specifies orientation if angle != 0 and vector_u.cross(vector_v).angle(normal) < 1: angle = -angle return angle # we have already checked for valid data. ik_handle = c.target.pose.bones[c.subtarget] base_ik_bone = self.get_base_ik_bone(ik_bone) start_effector = base_ik_bone.bone.head_local angle = c.pole_angle dg = context.view_layer.depsgraph dg.update() ik_axis = (ik_handle.bone.head_local-start_effector).normalized() center_point = start_effector +(ik_axis*base_ik_bone.bone.length) knee_direction = base_ik_bone.bone.tail_local - center_point current_knee_direction = base_ik_bone.tail-center_point error=signed_angle(current_knee_direction, knee_direction, ik_axis) if error == 0: prGreen("No Fine-tuning needed."); return # Flip it if needed dot_before=current_knee_direction.dot(knee_direction) if dot_before < 0 and angle!=0: # then it is not aligned and we should check the inverse angle = -angle; c.pole_angle=angle dg.update() current_knee_direction = base_ik_bone.tail-center_point dot_after=current_knee_direction.dot(knee_direction) if dot_after < dot_before: # they are somehow less aligned prPurple("Mantis has gone down an unexpected code path. Please report this as a bug.") angle = -angle; self.set_pole_angle(c, angle) dg.update() # now we can do a bisect search to find the best value. error_threshhold = FLOAT_EPSILON max_iterations=600 error=signed_angle(current_knee_direction, knee_direction, ik_axis) if error == 0: prGreen("No Fine-tuning needed."); return angle+=error alt_angle = angle+(error*-2) # should be very near the center when flipped here # we still need to bisect search because the relationship of pole_angle <==> error is somewhat unpredictable upper_bounds = alt_angle if alt_angle > angle else angle lower_bounds = alt_angle if alt_angle < angle else angle i, error_identical = 0, 0 while ( True ): if (i>=max_iterations): prOrange(f"IK Pole Angle Set reached max iterations of {i-error_identical} in {time()-start_time} seconds") break if (abs(error) 3): prPurple(f"IK Pole Angle Set converged after {i-error_identical} iterations with error={error} in {time()-start_time} seconds") break # get the center-point betweeen the bounds try_angle = lower_bounds + (upper_bounds-lower_bounds)/2 self.set_pole_angle(c, try_angle); dg.update() prev_error = error error = signed_angle((base_ik_bone.tail-center_point), knee_direction, ik_axis) error_identical+= int(error == prev_error) if error>0: upper_bounds=try_angle if error<0: lower_bounds=try_angle i+=1 def bExecute(self, context): prepare_parameters(self) for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapOrange("Inverse Kinematics")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) ik_bone = xf.bGetObject() c = xf.bGetObject().constraints.new('IK') self.get_target_and_subtarget(c) self.get_target_and_subtarget(c, input_name = 'Pole Target') if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) c.chain_count = 1 # so that, if there are errors, this doesn't print # a whole bunch of circular dependency crap from having infinite chain length if (c.pole_target): self.set_pole_angle(c, self.calc_pole_angle_pre(c, ik_bone)) props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) c.use_location = self.evaluate_input("Position") > 0 c.use_rotation = self.evaluate_input("Rotation") > 0 self.executed = True def bFinalize(self, bContext = None): # adding a test here if bContext: for i, constraint in enumerate(self.bObject): ik_bone = self.GetxForm()[i].bGetObject(mode='POSE') if constraint.pole_target: prWhite(f"Fine-tuning IK Pole Angle for {self}") # make sure to enable it first enabled_before = constraint.mute constraint.mute = False self.calc_pole_angle_post(constraint, ik_bone, bContext) constraint.mute = enabled_before super().bFinalize(bContext) def ik_report_error(pb, context, do_print=False): dg = context.view_layer.depsgraph dg.update() loc1, rot_quaternion1, scl1 = pb.matrix.decompose() loc2, rot_quaternion2, scl2 = pb.bone.matrix_local.decompose() location_error=(loc1-loc2).length rotation_error = rot_quaternion1.rotation_difference(rot_quaternion2).angle scale_error = (scl1-scl2).length if location_error < FLOAT_EPSILON: location_error = 0 if abs(rotation_error) < FLOAT_EPSILON: rotation_error = 0 if scale_error < FLOAT_EPSILON: scale_error = 0 if do_print: print (f"IK Location Error: {location_error}") print (f"IK Rotation Error: {rotation_error}") print (f"IK Scale Error : {scale_error}") return (location_error, rotation_error, scale_error) # This is kinda a weird design decision? class LinkDrivenParameter(MantisLinkNode): '''A node representing an armature object''' def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkDrivenParameterSockets) self.init_parameters(additional_parameters={ "Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, bContext = None,): prepare_parameters(self) prGreen("Executing Driven Parameter node") prop = self.evaluate_input("Parameter") index = self.evaluate_input("Index") value = self.evaluate_input("Value") for xf in self.GetxForm(): ob = xf.bGetObject(mode="POSE") # IMPORTANT: this node only works on pose bone attributes. self.bObject.append(ob) length=1 if hasattr(ob, prop): try: length = len(getattr(ob, prop)) except TypeError: pass except AttributeError: pass else: raise AttributeError(f"Cannot Set value {prop} on object because it does not exist.") def_value = 0.0 if length>1: def_value=[0.0]*length self.parameters["Value"] = tuple( 0.0 if i != index else value for i in range(length)) props_sockets = { prop: ("Value", def_value) } evaluate_sockets(self, ob, props_sockets) self.executed = True def bFinalize(self, bContext = None): driver = self.evaluate_input("Value") try: for i, val in enumerate(self.parameters["Value"]): from .drivers import MantisDriver if isinstance(val, MantisDriver): driver["ind"] = i val = driver except AttributeError: self.parameters["Value"] = driver except TypeError: self.parameters["Value"] = driver super().bFinalize(bContext) class LinkArmature(MantisLinkNode): '''A node representing an armature object''' def __init__(self, signature, base_tree,): super().__init__(signature, base_tree, LinkArmatureSockets) self.init_parameters(additional_parameters={"Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) setup_custom_props(self) # <-- this takes care of the runtime-added sockets def bExecute(self, bContext = None,): prepare_parameters(self) for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapOrange("Armature")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) c = xf.bGetObject().constraints.new('ARMATURE') if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) # get number of targets num_targets = len( list(self.inputs.values())[6:] )//2 props_sockets = self.gen_property_socket_map() targets_weights = {} for i in range(num_targets): target = c.targets.new() target_input_name = list(self.inputs.keys())[i*2+6 ] weight_input_name = list(self.inputs.keys())[i*2+6+1] self.get_target_and_subtarget(target, target_input_name) weight_value=self.evaluate_input(weight_input_name) if not isinstance(weight_value, float): weight_value=0 targets_weights[i]=weight_value props_sockets["targets[%d].weight" % i] = (weight_input_name, 0) # targets_weights.append({"weight":(weight_input_name, 0)}) evaluate_sockets(self, c, props_sockets) for target, value in targets_weights.items(): c.targets[target].weight=value self.executed = True class LinkSplineIK(MantisLinkNode): '''A node representing an armature object''' def __init__(self, signature, base_tree): super().__init__(signature, base_tree, LinkSplineIKSockets) self.init_parameters(additional_parameters={"Name":None }) self.set_traverse([("Input Relationship", "Output Relationship")]) def bExecute(self, bContext = None,): prepare_parameters(self) if not self.inputs['Target'].is_linked: raise GraphError(f"ERROR: {self} is not connected to a target curve.") for xf in self.GetxForm(): print(wrapGreen("Creating ")+wrapOrange("Spline-IK")+ wrapGreen(" Constraint for bone: ") + wrapOrange(xf.bGetObject().name)) c = xf.bGetObject().constraints.new('SPLINE_IK') # set the spline - we need to get the right one spline_index = self.evaluate_input("Spline Index") from .utilities import get_extracted_spline_object proto_curve = self.inputs['Target'].links[0].from_node.bGetObject() curve = get_extracted_spline_object(proto_curve, spline_index, self.mContext) # link it to the view layer if (curve.name not in bContext.view_layer.active_layer_collection.collection.objects): bContext.view_layer.active_layer_collection.collection.objects.link(curve) c.target=curve if constraint_name := self.evaluate_input("Name"): c.name = constraint_name self.bObject.append(c) props_sockets = self.gen_property_socket_map() evaluate_sockets(self, c, props_sockets) self.executed = True